-
Notifications
You must be signed in to change notification settings - Fork 44
/
train.py
186 lines (119 loc) · 5.23 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import os
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
from process import next_batch
from getimg import CAPTCHA_HEIGHT, CAPTCHA_WIDTH, CAPTCHA_LEN, CAPTCHA_LIST
from datetime import datetime
# 随机生成权重
def weight_variable(shape, w_alpha=0.01):
initial = w_alpha * tf.random_normal(shape)
return tf.Variable(initial)
# 随机生成偏置项
def bias_variable(shape, b_alpha=0.1):
initial = b_alpha * tf.random_normal(shape)
return tf.Variable(initial)
# 局部变量线性组合,步长为1,模式‘SAME’代表卷积后图片尺寸不变,即零边距
def conv2d(x, w):
return tf.nn.conv2d(x, w, strides=[1, 1, 1, 1], padding='SAME')
# max pooling,取出区域内最大值为代表特征, 2x2pool,图片尺寸变为1/2
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
# 三层卷积神经网络计算图
def cnn_graph(x, keep_prob, size, captcha_list=CAPTCHA_LIST, captcha_len=CAPTCHA_LEN):
# 图片reshape为4维向量
image_height, image_width = size
x_image = tf.reshape(x, shape=[-1, image_height, image_width, 1])
# 第一层
# filter定义为3x3x1, 输出32个特征, 即32个filter
w_conv1 = weight_variable([3, 3, 1, 32])
b_conv1 = bias_variable([32])
# rulu激活函数
h_conv1 = tf.nn.relu(tf.nn.bias_add(conv2d(x_image, w_conv1), b_conv1))
# 池化
h_pool1 = max_pool_2x2(h_conv1)
# dropout防止过拟合
h_drop1 = tf.nn.dropout(h_pool1, keep_prob)
# 第二层
w_conv2 = weight_variable([3, 3, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(tf.nn.bias_add(conv2d(h_drop1, w_conv2), b_conv2))
h_pool2 = max_pool_2x2(h_conv2)
h_drop2 = tf.nn.dropout(h_pool2, keep_prob)
# 第三层
w_conv3 = weight_variable([3, 3, 64, 64])
b_conv3 = bias_variable([64])
h_conv3 = tf.nn.relu(tf.nn.bias_add(conv2d(h_drop2, w_conv3), b_conv3))
h_pool3 = max_pool_2x2(h_conv3)
h_drop3 = tf.nn.dropout(h_pool3, keep_prob)
# 全连接层
image_height = int(h_drop3.shape[1])
image_width = int(h_drop3.shape[2])
w_fc = weight_variable([image_height * image_width * 64, 1024])
b_fc = bias_variable([1024])
h_drop3_re = tf.reshape(h_drop3, [-1, image_height * image_width * 64])
h_fc = tf.nn.relu(tf.add(tf.matmul(h_drop3_re, w_fc), b_fc))
h_drop_fc = tf.nn.dropout(h_fc, keep_prob)
# 全连接层(输出层)
w_out = weight_variable([1024, len(captcha_list) * captcha_len])
b_out = bias_variable([len(captcha_list) * captcha_len])
y_conv = tf.add(tf.matmul(h_drop_fc, w_out), b_out)
return y_conv
# 最小化loss
def optimize_graph(y, y_conv):
# 交叉熵计算loss
# sigmod_cross适用于每个类别相互独立但不互斥,如图中可以有字母和数字
loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=y_conv, labels=y))
# 最小化loss优化
optimizer = tf.train.AdamOptimizer(learning_rate=0.001).minimize(loss)
return optimizer
# 偏差计算
def accuracy_graph(y, y_conv, width=len(CAPTCHA_LIST), height=CAPTCHA_LEN):
# 预测值
predict = tf.reshape(y_conv, [-1, height, width])
max_predict_idx = tf.argmax(predict, 2)
# 标签
label = tf.reshape(y, [-1, height, width])
max_label_idx = tf.argmax(label, 2)
correct_p = tf.equal(max_predict_idx, max_label_idx)
accuracy = tf.reduce_mean(tf.cast(correct_p, tf.float32))
return accuracy
# 训练cnn
def train(height=CAPTCHA_HEIGHT, width=CAPTCHA_WIDTH, y_size=len(CAPTCHA_LIST) * CAPTCHA_LEN):
acc_rate = 0.95
# 按照图片大小申请占位符
x = tf.placeholder(tf.float32, [None, height * width])
y = tf.placeholder(tf.float32, [None, y_size])
# 防止过拟合 训练时启用 测试时不启用
keep_prob = tf.placeholder(tf.float32)
# cnn模型
y_conv = cnn_graph(x, keep_prob, (height, width))
# 最优化
optimizer = optimize_graph(y, y_conv)
# 偏差
accuracy = accuracy_graph(y, y_conv)
# 启动会话.开始训练
saver = tf.train.Saver()
sess = tf.Session()
sess.run(tf.global_variables_initializer())
step = 0
while 1:
# 每批次64个样本
batch_x, batch_y = next_batch(64)
sess.run(optimizer, feed_dict={x: batch_x, y: batch_y, keep_prob: 0.75})
print("step:", step)
# 每训练一百次测试一次
if step % 100 == 0:
batch_x_test, batch_y_test = next_batch(100)
acc = sess.run(accuracy, feed_dict={x: batch_x_test, y: batch_y_test, keep_prob: 1.0})
print(datetime.now().strftime('%c'), ' step:', step, ' accuracy:', acc)
# 偏差满足要求,保存模型
if acc > acc_rate:
model_path = os.getcwd() + os.sep + str(acc_rate) + "captcha.model"
saver.save(sess, model_path, global_step=step)
acc_rate += 0.01
if acc_rate > 0.99:
break
step += 1
sess.close()
if __name__ == '__main__':
train()