-
Notifications
You must be signed in to change notification settings - Fork 0
/
convert_algos.py
119 lines (95 loc) · 4.56 KB
/
convert_algos.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import sys
import yaml
from dataclasses import asdict, dataclass, field
from typing import Any, Dict, List, Literal, NewType
from collections import defaultdict
AlgoModule = NewType('AlgoModule', str)
MetricType = Literal["bit", "float"]
@dataclass
class RunGroup:
args: Any = field(default_factory=dict)
arg_groups: List[Dict] = field(default_factory=list)
query_args: List[List[str]] = field(default_factory=list)
@dataclass()
class Algorithm:
docker_tag: str
module: str
constructor: str
base_args: Dict = field(default_factory=dict)
disabled: bool = False
run_groups: Dict[str, RunGroup] = field(default_factory=dict)
def to_dict(self):
return asdict(self)
@dataclass
class MetricType:
algorithms: Dict[str, Algorithm] = field(default_factory=dict)
@dataclass
class Metric:
metric_types: Dict[str, MetricType] = field(default_factory=dict)
@dataclass
class Data:
float: Metric = field(default_factory=Metric)
bit: Metric = field(default_factory=Metric)
@dataclass
class AlgorithmFile:
# maps float.euclidean.Algorithm
algos: Dict[str, Dict[str, Algorithm]] = field(default_factory=dict)
def replace_hyphens_in_keys(data):
"""Replaces hyphens in keys with underscores for a given dictionary."""
return {k.replace('-', '_'): v for k, v in data.items()}
def convert_raw_data_to_dataclasses(raw_data: Dict[str, Any]) -> Data:
"""Converts the raw data (from Yaml) into the above dataclasses."""
data = Data()
for metric_name, metric_types in raw_data.items():
metric = Metric()
for metric_type_name, algorithms in metric_types.items():
metric_type = MetricType()
for algorithm_name, algorithm_info in algorithms.items():
run_groups_params = algorithm_info.pop('run-groups') if algorithm_info.get('run-groups') is not None else {}
run_groups = {name: RunGroup(**replace_hyphens_in_keys(info)) for name, info in run_groups_params.items()}
algorithm = Algorithm(run_groups=run_groups, **replace_hyphens_in_keys(algorithm_info))
metric_type.algorithms[algorithm_name] = algorithm
metric.metric_types[metric_type_name] = metric_type
metric.metric_types[metric_name] = metric
return data
def add_algorithm_metrics(files: Dict[AlgoModule, Dict[str, Dict[str, AlgorithmFile]]], metric_type: MetricType, metric_dict: Dict[str, MetricType]):
"""
Updates the mapping of algorithms to configurations for a given metric type and data.
Process a given metric dictionary and update the 'files' dictionary.
"""
for metric, metric_type in metric_dict.items():
for name, algorithm in metric_type.algorithms.items():
algorithm_name = algorithm.module.split(".")[-1]
if files[algorithm_name].get(metric_type) is None:
files[algorithm_name][metric_type] = {}
if files[algorithm_name][metric_type].get(metric) is None:
files[algorithm_name][metric_type][metric] = []
output = algorithm.to_dict()
output["name"] = name
files[algorithm_name][metric_type][metric].append(output)
def config_write(module_name: str, content: Dict[str, Dict[str, AlgorithmFile]]) -> None:
"""For a given algorithm module, write the algorithm's config to file."""
class CustomDumper(yaml.SafeDumper):
def represent_list(self, data):
## Avoid use [[]] for base lists
if len(data) > 0 and isinstance(data[0], dict) and "docker_tag" in data[0].keys():
return super().represent_list(data)
else:
return self.represent_sequence('tag:yaml.org,2002:seq', data, flow_style=True)
CustomDumper.add_representer(list, CustomDumper.represent_list)
with open(f"ann_benchmarks/algorithms/{module_name}/config.yml", 'w+') as cfg:
yaml.dump(content, cfg, Dumper=CustomDumper, default_flow_style=False)
if __name__ == "__main__":
try:
raw_yaml = sys.argv[0] if len(sys.argv) > 1 else "algos.yaml"
with open(raw_yaml, 'r') as stream:
raw_data = yaml.safe_load(stream)
except FileNotFoundError:
print("The file 'algos.yaml' was not found.")
exit(1)
data = convert_raw_data_to_dataclasses(raw_data)
files: Dict[str, Dict[str, Dict[str, AlgorithmFile]]] = defaultdict(dict)
add_algorithm_metrics(files, 'bit', data.bit.metric_types)
add_algorithm_metrics(files, 'float', data.float.metric_types)
for module_name, file_dict in files.items():
config_write(module_name, file_dict)