forked from jeelabs/jeelib
-
Notifications
You must be signed in to change notification settings - Fork 0
/
RF12.cpp
904 lines (825 loc) · 33.3 KB
/
RF12.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
/// @file
/// RFM12B driver implementation
// 2009-02-09 <[email protected]> http://opensource.org/licenses/mit-license.php
#include "RF12.h"
#include <avr/io.h>
#include <util/crc16.h>
#include <avr/eeprom.h>
#include <avr/sleep.h>
#if ARDUINO >= 100
#include <Arduino.h> // Arduino 1.0
#else
#include <WProgram.h> // Arduino 0022
#endif
// #define OPTIMIZE_SPI 1 // uncomment this to write to the RFM12B @ 8 Mhz
// pin change interrupts are currently only supported on ATmega328's
// #define PINCHG_IRQ 1 // uncomment this to use pin-change interrupts
// maximum transmit / receive buffer: 3 header + data + 2 crc bytes
#define RF_MAX (RF12_MAXDATA + 5)
// pins used for the RFM12B interface - yes, there *is* logic in this madness:
//
// - leave RFM_IRQ set to the pin which corresponds with INT0, because the
// current driver code will use attachInterrupt() to hook into that
// - (new) you can now change RFM_IRQ, if you also enable PINCHG_IRQ - this
// will switch to pin change interrupts instead of attach/detachInterrupt()
// - use SS_DDR, SS_PORT, and SS_BIT to define the pin you will be using as
// select pin for the RFM12B (you're free to set them to anything you like)
// - please leave SPI_SS, SPI_MOSI, SPI_MISO, and SPI_SCK as is, i.e. pointing
// to the hardware-supported SPI pins on the ATmega, *including* SPI_SS !
#if defined(__AVR_ATmega2560__) || defined(__AVR_ATmega1280__)
#define RFM_IRQ 2
#define SS_DDR DDRB
#define SS_PORT PORTB
#define SS_BIT 0
#define SPI_SS 53 // PB0, pin 19
#define SPI_MOSI 51 // PB2, pin 21
#define SPI_MISO 50 // PB3, pin 22
#define SPI_SCK 52 // PB1, pin 20
#elif defined(__AVR_ATmega644P__)
#define RFM_IRQ 10
#define SS_DDR DDRB
#define SS_PORT PORTB
#define SS_BIT 4
#define SPI_SS 4
#define SPI_MOSI 5
#define SPI_MISO 6
#define SPI_SCK 7
#elif defined(__AVR_ATtiny84__) || defined(__AVR_ATtiny44__)
#define RFM_IRQ 2
#define SS_DDR DDRB
#define SS_PORT PORTB
#define SS_BIT 1
#define SPI_SS 1 // PB1, pin 3
#define SPI_MISO 4 // PA6, pin 7
#define SPI_MOSI 5 // PA5, pin 8
#define SPI_SCK 6 // PA4, pin 9
#elif defined(__AVR_ATmega32U4__) //Arduino Leonardo
#define RFM_IRQ 0 // PD0, INT0, Digital3
#define SS_DDR DDRB
#define SS_PORT PORTB
#define SS_BIT 6 // Dig10, PB6
#define SPI_SS 17 // PB0, pin 8, Digital17
#define SPI_MISO 14 // PB3, pin 11, Digital14
#define SPI_MOSI 16 // PB2, pin 10, Digital16
#define SPI_SCK 15 // PB1, pin 9, Digital15
#else
// ATmega168, ATmega328, etc.
#define RFM_IRQ 2
#define SS_DDR DDRB
#define SS_PORT PORTB
#define SS_BIT 2 // for PORTB: 2 = d.10, 1 = d.9, 0 = d.8
#define SPI_SS 10 // PB2, pin 16
#define SPI_MOSI 11 // PB3, pin 17
#define SPI_MISO 12 // PB4, pin 18
#define SPI_SCK 13 // PB5, pin 19
#endif
// RF12 command codes
#define RF_RECEIVER_ON 0x82DD
#define RF_XMITTER_ON 0x823D
#define RF_IDLE_MODE 0x820D
#define RF_SLEEP_MODE 0x8205
#define RF_WAKEUP_MODE 0x8207
#define RF_TXREG_WRITE 0xB800
#define RF_RX_FIFO_READ 0xB000
#define RF_WAKEUP_TIMER 0xE000
// RF12 status bits
#define RF_LBD_BIT 0x0400
#define RF_RSSI_BIT 0x0100
// bits in the node id configuration byte
#define NODE_BAND 0xC0 // frequency band
#define NODE_ACKANY 0x20 // ack on broadcast packets if set
#define NODE_ID 0x1F // id of this node, as A..Z or 1..31
// transceiver states, these determine what to do with each interrupt
enum {
TXCRC1, TXCRC2, TXTAIL, TXDONE, TXIDLE,
TXRECV,
TXPRE1, TXPRE2, TXPRE3, TXSYN1, TXSYN2,
};
static uint8_t cs_pin = SS_BIT; // chip select pin
static uint8_t nodeid; // address of this node
static uint8_t group; // network group
static volatile uint8_t rxfill; // number of data bytes in rf12_buf
static volatile int8_t rxstate; // current transceiver state
#define RETRIES 8 // stop retrying after 8 times
#define RETRY_MS 1000 // resend packet every second until ack'ed
static uint8_t ezInterval; // number of seconds between transmits
static uint8_t ezSendBuf[RF12_MAXDATA]; // data to send
static char ezSendLen; // number of bytes to send
static uint8_t ezPending; // remaining number of retries
static long ezNextSend[2]; // when was last retry [0] or data [1] sent
volatile uint16_t rf12_crc; // running crc value
volatile uint8_t rf12_buf[RF_MAX]; // recv/xmit buf, including hdr & crc bytes
long rf12_seq; // seq number of encrypted packet (or -1)
static uint32_t seqNum; // encrypted send sequence number
static uint32_t cryptKey[4]; // encryption key to use
void (*crypter)(uint8_t); // does en-/decryption (null if disabled)
// function to set chip select pin from within sketch
void rf12_set_cs(uint8_t pin)
{
#if defined(__AVR_ATmega32U4__) //Arduino Leonardo
if (pin==10) cs_pin=6; // Dig10, PB6
if (pin==9) cs_pin=5; // Dig9, PB5
if (pin==8) cs_pin=4; // Dig8, PB4
#elif defined(__AVR_ATmega168__) || defined(__AVR_ATmega328__) || defined (__AVR_ATmega328P__) // ATmega168, ATmega328
if (pin==10) cs_pin = 2; // Dig10, PB2
if (pin==9) cs_pin = 1; // Dig9, PB1
if (pin==8) cs_pin = 0; // Dig8, PB0
#endif
}
void rf12_spiInit () {
bitSet(SS_PORT, cs_pin);
bitSet(SS_DDR, cs_pin);
digitalWrite(SPI_SS, 1);
pinMode(SPI_SS, OUTPUT);
pinMode(SPI_MOSI, OUTPUT);
pinMode(SPI_MISO, INPUT);
pinMode(SPI_SCK, OUTPUT);
#ifdef SPCR
SPCR = _BV(SPE) | _BV(MSTR);
#if F_CPU > 10000000
// use clk/2 (2x 1/4th) for sending (and clk/8 for recv, see rf12_xferSlow)
SPSR |= _BV(SPI2X);
#endif
#else
// ATtiny
USICR = bit(USIWM0);
#endif
pinMode(RFM_IRQ, INPUT);
digitalWrite(RFM_IRQ, 1); // pull-up
}
static uint8_t rf12_byte (uint8_t out) {
#ifdef SPDR
SPDR = out;
// this loop spins 4 usec with a 2 MHz SPI clock
while (!(SPSR & _BV(SPIF)))
;
return SPDR;
#else
// ATtiny
USIDR = out;
byte v1 = bit(USIWM0) | bit(USITC);
byte v2 = bit(USIWM0) | bit(USITC) | bit(USICLK);
#if F_CPU <= 5000000
// only unroll if resulting clock stays under 2.5 MHz
USICR = v1; USICR = v2;
USICR = v1; USICR = v2;
USICR = v1; USICR = v2;
USICR = v1; USICR = v2;
USICR = v1; USICR = v2;
USICR = v1; USICR = v2;
USICR = v1; USICR = v2;
USICR = v1; USICR = v2;
#else
for (uint8_t i = 0; i < 8; ++i) {
USICR = v1;
USICR = v2;
}
#endif
return USIDR;
#endif
}
static uint16_t rf12_xferSlow (uint16_t cmd) {
// slow down to under 2.5 MHz
#if F_CPU > 10000000
bitSet(SPCR, SPR0);
#endif
bitClear(SS_PORT, cs_pin);
uint16_t reply = rf12_byte(cmd >> 8) << 8;
reply |= rf12_byte(cmd);
bitSet(SS_PORT, cs_pin);
#if F_CPU > 10000000
bitClear(SPCR, SPR0);
#endif
return reply;
}
#if OPTIMIZE_SPI
static void rf12_xfer (uint16_t cmd) {
// writing can take place at full speed, even 8 MHz works
bitClear(SS_PORT, cs_pin);
rf12_byte(cmd >> 8) << 8;
rf12_byte(cmd);
bitSet(SS_PORT, cs_pin);
}
#else
#define rf12_xfer rf12_xferSlow
#endif
/// @details
/// This call provides direct access to the RFM12B registers. If you're careful
/// to avoid configuring the wireless module in a way which stops the driver
/// from functioning, this can be used to adjust frequencies, power levels,
/// RSSI threshold, etc. See the RFM12B wireless module documentation.
///
/// This call will briefly disable interrupts to avoid clashes on the SPI bus.
///
/// Returns the 16-bit value returned by SPI. Probably only useful with a
/// "0x0000" status poll command.
/// @param cmd RF12 command, topmost bits determines which register is affected.
uint16_t rf12_control(uint16_t cmd) {
#ifdef EIMSK
#if PINCHG_IRQ
#if RFM_IRQ < 8
bitClear(PCICR, PCIE2);
#elif RFM_IRQ < 14
bitClear(PCICR, PCIE0);
#else
bitClear(PCICR, PCIE1);
#endif
#else
bitClear(EIMSK, INT0);
#endif
uint16_t r = rf12_xferSlow(cmd);
#if PINCHG_IRQ
#if RFM_IRQ < 8
bitSet(PCICR, PCIE2);
#elif RFM_IRQ < 14
bitSet(PCICR, PCIE0);
#else
bitSet(PCICR, PCIE1);
#endif
#else
bitSet(EIMSK, INT0);
#endif
#else
// ATtiny
bitClear(GIMSK, INT0);
uint16_t r = rf12_xferSlow(cmd);
bitSet(GIMSK, INT0);
#endif
return r;
}
static void rf12_interrupt() {
// a transfer of 2x 16 bits @ 2 MHz over SPI takes 2x 8 us inside this ISR
// correction: now takes 2 + 8 µs, since sending can be done at 8 MHz
rf12_xfer(0x0000);
if (rxstate == TXRECV) {
uint8_t in = rf12_xferSlow(RF_RX_FIFO_READ);
if (rxfill == 0 && group != 0)
rf12_buf[rxfill++] = group;
rf12_buf[rxfill++] = in;
rf12_crc = _crc16_update(rf12_crc, in);
if (rxfill >= rf12_len + 5 || rxfill >= RF_MAX)
rf12_xfer(RF_IDLE_MODE);
} else {
uint8_t out;
if (rxstate < 0) {
uint8_t pos = 3 + rf12_len + rxstate++;
out = rf12_buf[pos];
rf12_crc = _crc16_update(rf12_crc, out);
} else
switch (rxstate++) {
case TXSYN1: out = 0x2D; break;
case TXSYN2: out = group; rxstate = - (2 + rf12_len); break;
case TXCRC1: out = rf12_crc; break;
case TXCRC2: out = rf12_crc >> 8; break;
case TXDONE: rf12_xfer(RF_IDLE_MODE); // fall through
default: out = 0xAA;
}
rf12_xfer(RF_TXREG_WRITE + out);
}
}
#if PINCHG_IRQ
#if RFM_IRQ < 8
ISR(PCINT2_vect) {
while (!bitRead(PIND, RFM_IRQ))
rf12_interrupt();
}
#elif RFM_IRQ < 14
ISR(PCINT0_vect) {
while (!bitRead(PINB, RFM_IRQ - 8))
rf12_interrupt();
}
#else
ISR(PCINT1_vect) {
while (!bitRead(PINC, RFM_IRQ - 14))
rf12_interrupt();
}
#endif
#endif
static void rf12_recvStart () {
rxfill = rf12_len = 0;
rf12_crc = ~0;
#if RF12_VERSION >= 2
if (group != 0)
rf12_crc = _crc16_update(~0, group);
#endif
rxstate = TXRECV;
rf12_xfer(RF_RECEIVER_ON);
}
#include <RF12.h>
#include <Ports.h> // needed to avoid a linker error :(
byte rf12_recvDone();
/// @details
/// The timing of this function is relatively coarse, because SPI transfers are
/// used to enable / disable the transmitter. This will add some jitter to the
/// signal, probably in the order of 10 µsec.
///
/// If the result is true, then a packet has been received and is available for
/// processing. The following global variables will be set:
///
/// * volatile byte rf12_hdr -
/// Contains the header byte of the received packet - with flag bits and
/// node ID of either the sender or the receiver.
/// * volatile byte rf12_len -
/// The number of data bytes in the packet. A value in the range 0 .. 66.
/// * volatile byte rf12_data -
/// A pointer to the received data.
/// * volatile byte rf12_crc -
/// CRC of the received packet, zero indicates correct reception. If != 0
/// then rf12_hdr, rf12_len, and rf12_data should not be relied upon.
///
/// To send an acknowledgement, call rf12_sendStart() - but only right after
/// rf12_recvDone() returns true. This is commonly done using these macros:
///
/// if(RF12_WANTS_ACK){
/// rf12_sendStart(RF12_ACK_REPLY,0,0);
/// }
/// @see http://jeelabs.org/2010/12/11/rf12-acknowledgements/
uint8_t rf12_recvDone () {
if (rxstate == TXRECV && (rxfill >= rf12_len + 5 || rxfill >= RF_MAX)) {
rxstate = TXIDLE;
if (rf12_len > RF12_MAXDATA)
rf12_crc = 1; // force bad crc if packet length is invalid
if (!(rf12_hdr & RF12_HDR_DST) || (nodeid & NODE_ID) == 31 ||
(rf12_hdr & RF12_HDR_MASK) == (nodeid & NODE_ID)) {
if (rf12_crc == 0 && crypter != 0)
crypter(0);
else
rf12_seq = -1;
return 1; // it's a broadcast packet or it's addressed to this node
}
}
if (rxstate == TXIDLE)
rf12_recvStart();
return 0;
}
/// @details
/// Call this when you have some data to send. If it returns true, then you can
/// use rf12_sendStart() to start the transmission. Else you need to wait and
/// retry this call at a later moment.
///
/// Don't call this function if you have nothing to send, because rf12_canSend()
/// will stop reception when it returns true. IOW, calling the function
/// indicates your intention to send something, and once it returns true, you
/// should follow through and call rf12_sendStart() to actually initiate a send.
/// See [this weblog post](http://jeelabs.org/2010/05/20/a-subtle-rf12-detail/).
///
/// Note that even if you only want to send out packets, you still have to call
/// rf12_recvDone() periodically, because it keeps the RFM12B logic going. If
/// you don't, rf12_canSend() will never return true.
uint8_t rf12_canSend () {
// need interrupts off to avoid a race (and enable the RFM12B, thx Jorg!)
// see http://openenergymonitor.org/emon/node/1051?page=3
if (rxstate == TXRECV && rxfill == 0 &&
(rf12_control(0x0000) & RF_RSSI_BIT) == 0) {
rf12_control(RF_IDLE_MODE); // stop receiver
rxstate = TXIDLE;
return 1;
}
return 0;
}
void rf12_sendStart (uint8_t hdr) {
rf12_hdr = hdr & RF12_HDR_DST ? hdr :
(hdr & ~RF12_HDR_MASK) + (nodeid & NODE_ID);
if (crypter != 0)
crypter(1);
rf12_crc = ~0;
#if RF12_VERSION >= 2
rf12_crc = _crc16_update(rf12_crc, group);
#endif
rxstate = TXPRE1;
rf12_xfer(RF_XMITTER_ON); // bytes will be fed via interrupts
}
/// @details
/// Switch to transmission mode and send a packet.
/// This can be either a request or a reply.
///
/// Notes
/// -----
///
/// The rf12_sendStart() function may only be called in two specific situations:
///
/// * right after rf12_recvDone() returns true - used for sending replies /
/// acknowledgements
/// * right after rf12_canSend() returns true - used to send requests out
///
/// Because transmissions may only be started when there is no other reception
/// or transmission taking place.
///
/// The short form, i.e. "rf12_sendStart(hdr)" is for a special buffer-less
/// transmit mode, as described in this
/// [weblog post](http://jeelabs.org/2010/09/15/more-rf12-driver-notes/).
///
/// The call with 4 arguments, i.e. "rf12_sendStart(hdr, data, length, sync)" is
/// deprecated, as described in that same weblog post. The recommended idiom is
/// now to call it with 3 arguments, followed by a call to rf12_sendWait().
/// @param hdr The header contains information about the destination of the
/// packet to send, and flags such as whether this should be
/// acknowledged - or if it actually is an acknowledgement.
/// @param ptr Pointer to the data to send as packet.
/// @param len Number of data bytes to send. Must be in the range 0 .. 65.
void rf12_sendStart (uint8_t hdr, const void* ptr, uint8_t len) {
rf12_len = len;
memcpy((void*) rf12_data, ptr, len);
rf12_sendStart(hdr);
}
/// @deprecated Use the 3-arg version, followed by a call to rf12_sendWait.
void rf12_sendStart (uint8_t hdr, const void* ptr, uint8_t len, uint8_t sync) {
rf12_sendStart(hdr, ptr, len);
rf12_sendWait(sync);
}
/// @details
/// Wait until transmission is possible, then start it as soon as possible.
/// @note This uses a (brief) busy loop and will discard any incoming packets.
/// @param hdr The header contains information about the destination of the
/// packet to send, and flags such as whether this should be
/// acknowledged - or if it actually is an acknowledgement.
/// @param ptr Pointer to the data to send as packet.
/// @param len Number of data bytes to send. Must be in the range 0 .. 65.
void rf12_sendNow (uint8_t hdr, const void* ptr, uint8_t len) {
while (!rf12_canSend())
rf12_recvDone(); // keep the driver state machine going, ignore incoming
rf12_sendStart(hdr, ptr, len);
}
/// @details
/// Wait for completion of the preceding rf12_sendStart() call, using the
/// specified low-power mode.
/// @note rf12_sendWait() should only be called right after rf12_sendStart().
/// @param mode Power-down mode during wait: 0 = NORMAL, 1 = IDLE, 2 = STANDBY,
/// 3 = PWR_DOWN. Values 2 and 3 can cause the millisecond time to
/// lose a few interrupts. Value 3 can only be used if the ATmega
/// fuses have been set for fast startup, i.e. 258 CK - the default
/// Arduino fuse settings are not suitable for full power down.
void rf12_sendWait (uint8_t mode) {
// wait for packet to actually finish sending
// go into low power mode, as interrupts are going to come in very soon
while (rxstate != TXIDLE)
if (mode) {
// power down mode is only possible if the fuses are set to start
// up in 258 clock cycles, i.e. approx 4 us - else must use standby!
// modes 2 and higher may lose a few clock timer ticks
set_sleep_mode(mode == 3 ? SLEEP_MODE_PWR_DOWN :
#ifdef SLEEP_MODE_STANDBY
mode == 2 ? SLEEP_MODE_STANDBY :
#endif
SLEEP_MODE_IDLE);
sleep_mode();
}
}
/// @details
/// Call this once with the node ID (0-31), frequency band (0-3), and
/// optional group (0-255 for RFM12B, only 212 allowed for RFM12).
/// @param id The ID of this wireless node. ID's should be unique within the
/// netGroup in which this node is operating. The ID range is 0 to 31,
/// but only 1..30 are available for normal use. You can pass a single
/// capital letter as node ID, with 'A' .. 'Z' corresponding to the
/// node ID's 1..26, but this convention is now discouraged. ID 0 is
/// reserved for OOK use, node ID 31 is special because it will pick
/// up packets for any node (in the same netGroup).
/// @param band This determines in which frequency range the wireless module
/// will operate. The following pre-defined constants are available:
/// RF12_433MHZ, RF12_868MHZ, RF12_915MHZ. You should use the one
/// matching the module you have.
/// @param g Net groups are used to separate nodes: only nodes in the same net
/// group can communicate with each other. Valid values are 1 to 212.
/// This parameter is optional, it defaults to 212 (0xD4) when omitted.
/// This is the only allowed value for RFM12 modules, only RFM12B
/// modules support other group values.
/// @returns the nodeId, to be compatible with rf12_config().
///
/// Programming Tips
/// ----------------
/// Note that rf12_initialize() does not use the EEprom netId and netGroup
/// settings, nor does it change the EEPROM settings. To use the netId and
/// netGroup settings saved in EEPROM use rf12_config() instead of
/// rf12_initialize. The choice whether to use rf12_initialize() or
/// rf12_config() at the top of every sketch is one of personal preference.
/// To set EEPROM settings for use with rf12_config() use the RF12demo sketch.
uint8_t rf12_initialize (uint8_t id, uint8_t band, uint8_t g) {
nodeid = id;
group = g;
rf12_spiInit();
rf12_xfer(0x0000); // intitial SPI transfer added to avoid power-up problem
rf12_xfer(RF_SLEEP_MODE); // DC (disable clk pin), enable lbd
// wait until RFM12B is out of power-up reset, this takes several *seconds*
rf12_xfer(RF_TXREG_WRITE); // in case we're still in OOK mode
while (digitalRead(RFM_IRQ) == 0)
rf12_xfer(0x0000);
rf12_xfer(0x80C7 | (band << 4)); // EL (ena TX), EF (ena RX FIFO), 12.0pF
rf12_xfer(0xA640); // 868MHz
rf12_xfer(0xC606); // approx 49.2 Kbps, i.e. 10000/29/(1+6) Kbps
rf12_xfer(0x94A2); // VDI,FAST,134kHz,0dBm,-91dBm
rf12_xfer(0xC2AC); // AL,!ml,DIG,DQD4
if (group != 0) {
rf12_xfer(0xCA83); // FIFO8,2-SYNC,!ff,DR
rf12_xfer(0xCE00 | group); // SYNC=2DXX;
} else {
rf12_xfer(0xCA8B); // FIFO8,1-SYNC,!ff,DR
rf12_xfer(0xCE2D); // SYNC=2D;
}
rf12_xfer(0xC483); // @PWR,NO RSTRIC,!st,!fi,OE,EN
rf12_xfer(0x9850); // !mp,90kHz,MAX OUT
rf12_xfer(0xCC77); // OB1,OB0, LPX,!ddy,DDIT,BW0
rf12_xfer(0xE000); // NOT USE
rf12_xfer(0xC800); // NOT USE
rf12_xfer(0xC049); // 1.66MHz,3.1V
rxstate = TXIDLE;
#if PINCHG_IRQ
#if RFM_IRQ < 8
if ((nodeid & NODE_ID) != 0) {
bitClear(DDRD, RFM_IRQ); // input
bitSet(PORTD, RFM_IRQ); // pull-up
bitSet(PCMSK2, RFM_IRQ); // pin-change
bitSet(PCICR, PCIE2); // enable
} else
bitClear(PCMSK2, RFM_IRQ);
#elif RFM_IRQ < 14
if ((nodeid & NODE_ID) != 0) {
bitClear(DDRB, RFM_IRQ - 8); // input
bitSet(PORTB, RFM_IRQ - 8); // pull-up
bitSet(PCMSK0, RFM_IRQ - 8); // pin-change
bitSet(PCICR, PCIE0); // enable
} else
bitClear(PCMSK0, RFM_IRQ - 8);
#else
if ((nodeid & NODE_ID) != 0) {
bitClear(DDRC, RFM_IRQ - 14); // input
bitSet(PORTC, RFM_IRQ - 14); // pull-up
bitSet(PCMSK1, RFM_IRQ - 14); // pin-change
bitSet(PCICR, PCIE1); // enable
} else
bitClear(PCMSK1, RFM_IRQ - 14);
#endif
#else
if ((nodeid & NODE_ID) != 0)
attachInterrupt(0, rf12_interrupt, LOW);
else
detachInterrupt(0);
#endif
return nodeid;
}
/// @details
/// This can be used to send out slow bit-by-bit On Off Keying signals to other
/// devices such as remotely controlled power switches operating in the 433,
/// 868, or 915 MHz bands.
///
/// To use this, you need to first call rf12initialize() with a zero node ID
/// and the proper frequency band. Then call rf12onOff() in the exact timing
/// you need for sending out the signal. Once done, either call rf12onOff(0) to
/// turn the transmitter off, or reinitialize the wireless module completely
/// with a call to rf12initialize().
/// @param value Turn the transmitter on (if true) or off (if false).
/// @note The timing of this function is relatively coarse, because SPI
/// transfers are used to enable / disable the transmitter. This will add some
/// jitter to the signal, probably in the order of 10 µsec.
void rf12_onOff (uint8_t value) {
rf12_xfer(value ? RF_XMITTER_ON : RF_IDLE_MODE);
}
/// @details
/// This calls rf12_initialize() with settings obtained from EEPROM address
/// 0x20 .. 0x3F. These settings can be filled in by the RF12demo sketch in the
/// RFM12B library. If the checksum included in those bytes is not valid,
/// rf12_initialize() will not be called.
///
/// As side effect, rf12_config() also writes the current configuration to the
/// serial port, ending with a newline.
/// @returns the node ID obtained from EEPROM, or 0 if there was none.
uint8_t rf12_config (uint8_t show) {
uint16_t crc = ~0;
for (uint8_t i = 0; i < RF12_EEPROM_SIZE; ++i)
crc = _crc16_update(crc, eeprom_read_byte(RF12_EEPROM_ADDR + i));
if (crc != 0)
return 0;
uint8_t nodeId = 0, group = 0;
for (uint8_t i = 0; i < RF12_EEPROM_SIZE - 2; ++i) {
uint8_t b = eeprom_read_byte(RF12_EEPROM_ADDR + i);
if (i == 0)
nodeId = b;
else if (i == 1)
group = b;
else if (b == 0)
break;
else if (show)
Serial.print((char) b);
}
if (show)
Serial.println();
rf12_initialize(nodeId, nodeId >> 6, group);
return nodeId & RF12_HDR_MASK;
}
/// @details
/// This function can put the radio module to sleep and wake it up again.
/// In sleep mode, the radio will draw only one or two microamps of current.
///
/// This function can also be used as low-power watchdog, by putting the radio
/// to sleep and having it raise an interrupt between about 30 milliseconds
/// and 4 seconds later.
/// @param n If RF12SLEEP (0), put the radio to sleep - no scheduled wakeup.
/// If RF12WAKEUP (-1), wake the radio up so that the next call to
/// rf12_recvDone() can restore normal reception. If value is in the
/// range 1 .. 127, then the radio will go to sleep and generate an
/// interrupt approximately 32*value miliiseconds later.
/// @todo Figure out how to get the "watchdog" mode working reliably.
void rf12_sleep (char n) {
if (n < 0)
rf12_control(RF_IDLE_MODE);
else {
rf12_control(RF_WAKEUP_TIMER | 0x0500 | n);
rf12_control(RF_SLEEP_MODE);
if (n > 0)
rf12_control(RF_WAKEUP_MODE);
}
rxstate = TXIDLE;
}
/// @details
/// This checks the status of the RF12 low-battery detector. It wil be 1 when
/// the supply voltage drops below 3.1V, and 0 otherwise. This can be used to
/// detect an impending power failure, but there are no guarantees that the
/// power still remaining will be sufficient to send or receive further packets.
char rf12_lowbat () {
return (rf12_control(0x0000) & RF_LBD_BIT) != 0;
}
/// @details
/// Set up the easy transmission mechanism. The argument is the minimal number
/// of seconds between new data packets (from 1 to 255). With 0 as argument,
/// packets will be sent as fast as possible:
///
/// * On the 433 and 915 MHz frequency bands, this is fixed at 100 msec (10
/// packets/second).
///
/// * On the 866 MHz band, the frequency depends on the number of bytes sent:
/// for 1-byte packets, it will be up to 7 packets/second, for 66-byte bytes of
/// data it will be around 1 packet/second.
///
/// This function should be called after the RF12 driver has been initialized,
/// using either rf12_initialize() or rf12_config().
/// @param secs The minimal number of seconds between new data packets (from 1
/// to 255). With a 0 argument, packets will be sent as fast as
/// possible: on the 433 and 915 MHz frequency bands, this is fixed
/// at 100 msec (10 packets/second). On 866 MHz, the frequency
/// depends on the number of bytes sent: for 1-byte packets, it will
/// be up to 7 packets/second, for 66-byte bytes of data it will be
/// approx. 1 packet/second.
/// @note To be used in combination with rf12_easyPoll() and rf12_easySend().
void rf12_easyInit (uint8_t secs) {
ezInterval = secs;
}
/// @details
/// This needs to be called often to keep the easy transmission mechanism going,
/// i.e. once per millisecond or more in normal use. Failure to poll frequently
/// enough is relatively harmless but may lead to lost acknowledgements.
/// @returns 1 = an ack has been received with actual data in it, use rf12len
/// and rf12data to access it. 0 = there is nothing to do, the last
/// send has been ack'ed or more than 8 re-transmits have failed.
/// -1 = still sending or waiting for an ack to come in
/// @note To be used in combination with rf12_easyInit() and rf12_easySend().
char rf12_easyPoll () {
if (rf12_recvDone() && rf12_crc == 0) {
byte myAddr = nodeid & RF12_HDR_MASK;
if (rf12_hdr == (RF12_HDR_CTL | RF12_HDR_DST | myAddr)) {
ezPending = 0;
ezNextSend[0] = 0; // flags succesful packet send
if (rf12_len > 0)
return 1;
}
}
if (ezPending > 0) {
// new data sends should not happen less than ezInterval seconds apart
// ... whereas retries should not happen less than RETRY_MS apart
byte newData = ezPending == RETRIES;
long now = millis();
if (now >= ezNextSend[newData] && rf12_canSend()) {
ezNextSend[0] = now + RETRY_MS;
// must send new data packets at least ezInterval seconds apart
// ezInterval == 0 is a special case:
// for the 868 MHz band: enforce 1% max bandwidth constraint
// for other bands: use 100 msec, i.e. max 10 packets/second
if (newData)
ezNextSend[1] = now +
(ezInterval > 0 ? 1000L * ezInterval
: (nodeid >> 6) == RF12_868MHZ ?
13 * (ezSendLen + 10) : 100);
rf12_sendStart(RF12_HDR_ACK, ezSendBuf, ezSendLen);
--ezPending;
}
}
return ezPending ? -1 : 0;
}
/// @details
/// Submit some data bytes to send using the easy transmission mechanism. The
/// data bytes will be copied to an internal buffer since the actual send may
/// take place later than specified, and may need to be re-transmitted in case
/// packets are lost of damaged in transit.
///
/// Packets will be sent no faster than the rate specified in the
/// rf12_easyInit() call, even if called more often.
///
/// Only packets which differ from the previous packet will actually be sent.
/// To force re-transmission even if the data hasn't changed, call
/// "rf12_easySend(0,0)". This can be used to give a "sign of life" every once
/// in a while, and to recover when the receiving node has been rebooted and no
/// longer has the previous data.
///
/// The return value indicates whether a new packet transmission will be started
/// (1), or the data is the same as before and no send is needed (0).
///
/// Note that you also have to call rf12_easyPoll periodically, because it keeps
/// the RFM12B logic going. If you don't, rf12_easySend() will never send out
/// any packets.
/// @note To be used in combination with rf12_easyInit() and rf12_easyPoll().
char rf12_easySend (const void* data, uint8_t size) {
if (data != 0 && size != 0) {
if (ezNextSend[0] == 0 && size == ezSendLen &&
memcmp(ezSendBuf, data, size) == 0)
return 0;
memcpy(ezSendBuf, data, size);
ezSendLen = size;
}
ezPending = RETRIES;
return 1;
}
// XXTEA by David Wheeler, adapted from http://en.wikipedia.org/wiki/XXTEA
#define DELTA 0x9E3779B9
#define MX (((z>>5^y<<2) + (y>>3^z<<4)) ^ ((sum^y) + \
(cryptKey[(uint8_t)((p&3)^e)] ^ z)))
static void cryptFun (uint8_t send) {
uint32_t y, z, sum, *v = (uint32_t*) rf12_data;
uint8_t p, e, rounds = 6;
if (send) {
// pad with 1..4-byte sequence number
*(uint32_t*)(rf12_data + rf12_len) = ++seqNum;
uint8_t pad = 3 - (rf12_len & 3);
rf12_len += pad;
rf12_data[rf12_len] &= 0x3F;
rf12_data[rf12_len] |= pad << 6;
++rf12_len;
// actual encoding
char n = rf12_len / 4;
if (n > 1) {
sum = 0;
z = v[n-1];
do {
sum += DELTA;
e = (sum >> 2) & 3;
for (p=0; p<n-1; p++)
y = v[p+1], z = v[p] += MX;
y = v[0];
z = v[n-1] += MX;
} while (--rounds);
}
} else if (rf12_crc == 0) {
// actual decoding
char n = rf12_len / 4;
if (n > 1) {
sum = rounds*DELTA;
y = v[0];
do {
e = (sum >> 2) & 3;
for (p=n-1; p>0; p--)
z = v[p-1], y = v[p] -= MX;
z = v[n-1];
y = v[0] -= MX;
} while ((sum -= DELTA) != 0);
}
// strip sequence number from the end again
if (n > 0) {
uint8_t pad = rf12_data[--rf12_len] >> 6;
rf12_seq = rf12_data[rf12_len] & 0x3F;
while (pad-- > 0)
rf12_seq = (rf12_seq << 8) | rf12_data[--rf12_len];
}
}
}
/// @details
/// This enables or disables encryption using the public domain XXTEA algorithm
/// by David Wheeler. The payload will be extended with 1 .. 4 bytes, containing
/// a 6..30-bit sequence number which is incremented in the sender for each new
/// packet.
///
/// The number of bits sent across depends on the number of padding bytes needed
/// to make the resulting payload an exact mulitple of 4 bytes. A longer
/// sequence number field can provide more protection against replay attacks
/// (note that verification of this sequence number must be implemented in the
/// receiver code).
///
/// Encrypted packets (and acknowledgements) must be 4..62 bytes long. Packets
/// less than 4 bytes will not be encrypted. On reception, the payload length is
/// adjusted back to the original length passed to rf12_sendStart().
///
/// There is a "long rf12seq" global which is set to the received sequence
/// number (only valid right after rf12recvDone() returns true). When encryption
/// is not enabled, this global is set to -1.
/// @param key Pointer to a 16-byte (128-bit) encryption key to use for all
/// packet data. A null pointer disables encryption again. Note:
/// this is an EEPROM address, not RAM! - RF12_EEPROM_EKEY is a great
/// value to use, as defined in the include file, but another address
/// can be specified if needed.
/// @see http://jeelabs.org/2010/02/23/secure-transmissions/
void rf12_encrypt (const uint8_t* key) {
// by using a pointer to cryptFun, we only link it in when actually used
if (key != 0) {
for (uint8_t i = 0; i < sizeof cryptKey; ++i)
((uint8_t*) cryptKey)[i] = eeprom_read_byte(key + i);
crypter = cryptFun;
} else
crypter = 0;
}