This repository has been archived by the owner on Mar 22, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1
/
ocrCloudVision.R
109 lines (83 loc) · 3.75 KB
/
ocrCloudVision.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
# A script to use Google Cloud Vision to OCR/parse/mangle Collections label-images
# Note!
# - this may take >30 seconds per label-image
# - running >1000 API calls/month incurs a fee
# (c) 2019 The Field Museum - MIT License (https://opensource.org/licenses/MIT)
# https://github.com/fieldmuseum/Collections-OCR
library(googleCloudVisionR) # NOTE - requires API Key / Service Account
library(tidyr)
library(readr)
library(stringr)
# library(magick)
# get list of local JPG & JPEG image files [REVERT]
imagelist <- list.files(path = "images/", pattern = ".jp|.JP")
imagenames <- gsub(".jp.*|.JP.*", "", imagelist)
# # Prompt user for input/output batch directory names?
# image_dir <- readline("Paste the path for the image directory: ")
# Retrieve OCR text ####
# Setup table for OCRed text
imagesOCR <- data.frame("image" = rep("", NROW(imagelist)),
"imagesize_MB" = rep("", NROW(imagelist)),
"ocr_start" = rep("", NROW(imagelist)),
"ocr_duration" = rep("", NROW(imagelist)),
"line_count" = rep("", NROW(imagelist)),
"text" = rep("", NROW(imagelist)),
stringsAsFactors = F)
imagesOCR$line_count <- as.integer(imagesOCR$line_count)
# setup output dir
# # add image_dir if use prompt above
if (!dir.exists("ocr_text")) { # paste0(image_dir, "_out")
dir.create("ocr_text") # paste0(image_dir, "_out")
print("output directory created")
} else {
print("output directory already exists")
}
# Loop through each label-image
for (i in 1:NROW(imagelist)) {
# # If files are over 20MB, uncomment this to lower quality + avoid error?
# ### NOTE! This will overwrite image with lower-quality file.
#
# if (file.info(paste0("images/", imagelist[i]))$size > 20000000) {
# image_write(image_read(paste0("images/", imagelist[i])),
# path = paste0("images/", imagelist[i]),
# quality = 80)
# OCR image
# ### NOTE! This can take over ~30s per image
print(paste(i, "- starting OCR -", Sys.time()))
imagesOCR$ocr_start[i] <- as.character(Sys.time())
start <- Sys.time()
ocr_list <- gcv_get_image_annotations(imagePaths = paste0("images/", imagelist[i]),
feature = "DOCUMENT_TEXT_DETECTION") #,
# savePath = paste0("ocr_text/",
# imagenames[i], "_text.csv"))
print(paste(i, "- finishing OCR -", Sys.time()))
end <- Sys.time()
# Add raw text to dataframe
imagesOCR$text[i] <- ocr_list$description
# Add OCR duration (in seconds), & text-lines per image, filename, filesize (in MB)
imagesOCR$ocr_duration[i] <- as.integer(end) - as.integer(start)
imagesOCR$line_count[i] <- str_count(ocr_list$description, "\n+")
imagesOCR$image[i] <- imagelist[i]
imagesOCR$imagesize_MB[i] <- round(file.info(paste0("images/",
imagelist[i]))$size
/ 1000000, 2)
# show progress
print(paste(i, "- done -", Sys.time()))
# rate limit to max of 240/min (Vision API limit = 1800/min)
Sys.sleep(0.25)
}
# split text lines to separate columns
ocrText <- separate(imagesOCR, text,
into = paste0("Line",
seq(1:max(imagesOCR$line_count, na.rm = T))),
# into = seq(1:20), # if need consistent NCOL
sep = "(\n)+",
extra = "merge", fill = "right")
# export CSV
write.csv(ocrText,
paste0("ocrText-",
gsub("\\s+|:", "", Sys.time()),
# image_dir,
".csv"),
na = "",
row.names = F)