forked from HarshCasper/NeoAlgo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Tim_Sort.cpp
121 lines (107 loc) · 2.66 KB
/
Tim_Sort.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
// TimSort implementation in C++
#include<iostream>
using namespace std;
const int N = 32;
// this function sorts array from left index to right index which is of size atmost RUN
void insertionSort(int arr[], int left, int right)
{
for (int i = left + 1; i <= right; i++)
{
int temp = arr[i];
int j = i - 1;
while (arr[j] > temp && j >= left)
{
arr[j + 1] = arr[j];
j--;
}
arr[j + 1] = temp;
}
}
// merge function merges the sorted runs
void merge(int arr[], int l, int m, int r)
{
// original array is broken in two parts
// left and right array
int len1 = m - l + 1, len2 = r - m;
int left[len1], right[len2];
for (int i = 0; i < len1; i++)
left[i] = arr[l + i];
for (int i = 0; i < len2; i++)
right[i] = arr[m + 1 + i];
int i = 0;
int j = 0;
int k = l;
// after comparing, we merge those two array in larger sub array
while (i < len1 && j < len2)
{
if (left[i] <= right[j])
{
arr[k] = left[i];
i++;
}
else
{
arr[k] = right[j];
j++;
}
k++;
}
// copy remaining elements of left, if any
while (i < len1)
{
arr[k] = left[i];
k++;
i++;
}
// copy remaining element of right, if any
while (j < len2)
{
arr[k] = right[j];
k++;
j++;
}
}
// iterative Timsort function to sort the array[0...n-1]
void timSort(int arr[], int n)
{
// Sort individual subarrays of size RUN
for (int i = 0; i < n; i += N)
insertionSort(arr, i, min((i + 31), (n - 1)));
// start merging from size RUN (or 32). It will merge to form size 64, then 128, 256 and so on ....
for (int size = N; size < n; size = 2 * size)
{
// pick starting point of left sub array. We are going to merge arr[left..left+size-1] and arr[left+size, left+2*size-1]
// After every merge, we increase left by 2*size
for (int left = 0; left < n; left += 2 * size)
{
// find ending point of left sub array mid+1 is starting point of right sub array
int mid = left + size - 1;
int right = min((left + 2 * size - 1), (n - 1));
// merge sub array arr[left.....mid] & arr[mid+1....right]
merge(arr, left, mid, right);
}
}
}
// function to print the Array
void printArray(int arr[], int n)
{
for (int i = 0; i < n; i++)
cout << arr[i] << " ";
cout << endl;
}
int main()
{
int n, arr[n];
cout << "Enter the number of elements of the array: ";
cin >> n;
cout << "Enter the elements of the array to be sorted: ";
for (int i = 0; i < n; i++) {
cin >> arr[i];
}
cout << "Given Array is:" << endl;
printArray(arr, n);
timSort(arr, n);
cout << "After Sorting Array is:" << endl;
printArray(arr, n);
return 0;
}