forked from HarshCasper/NeoAlgo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Height_Of_Binary_Tree_Non_Recursive.cpp
194 lines (165 loc) · 4.95 KB
/
Height_Of_Binary_Tree_Non_Recursive.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
/*
Introduction
Given a Binary Tree , Find its height without using recursion.
Argument/Return Type
Input of total no.of nodes is taken
Input of key values of nodes of tree are taken in level order form
Incase of a null node , -1 is taken as input
Function returns the height of the tree
*/
// Code / Solution
#include <bits/stdc++.h>
using namespace std;
//Define Node as structure
struct Node
{
int key;
Node* left;
Node* right;
};
// Function to create a node with 'value' as the data stored in it.
// Both the children of this new Node are initially null.
struct Node* newNode(int value)
{
Node* n = new Node;
n->key = value;
n->left = NULL;
n->right = NULL;
return n;
}
// Function to build tree with given input
struct Node* createTree(vector<int>v)
{
int n=v.size();
if(n==0)
return NULL;
vector<struct Node* >a(n);
//Create a vector of individual nodes with given node values
for(int i=0;i<n;i++)
{
//If the data is -1 , create a null node
if(v[i]==-1)
a[i] = NULL;
else
a[i] = newNode(v[i]);
}
//Interlink all created nodes to create a tree
//Use two pointers using int to store indexes
//One to keep track of parent node and one for children nodes
for(int i=0,j=1;j<n;i++)
{
//If the parent node is NULL , advance children pointer twice
if(!a[i])
{
j=j+2;
continue;
}
//Connect the two children nodes to parent node
//First left and then right nodes
a[i]->left = a[j++];
if(j<n)
a[i]->right = a[j++];
}
return a[0];
}
//Function to find Height of Binary Tree without using recursion
int FindHeightNonRecursive(struct Node* root)
{
//kepp counting levels , and finally return total no.of levels
//Initialise level as 0
int level=0;
// If root is NULL , return 0
if (root == NULL)
return level;
// Create an queue
queue<struct Node*> q;
//Enqueue the root node and a null node to indicate a level is completed
q.push(root);
q.push(NULL);
while (!q.empty())
{
//If we encounter a NULL node , it means a level is complete
//Hence we increase level variable
//Enqueue a null node , if there are more nodes left to visit
if(q.front()==NULL)
{
level++;
q.pop();
if(!q.empty())
{
//If there are more nodes in q , push a NULL node
q.push(NULL);
}
}
else
{
//Enqueue node's children , if they exist
if(q.front()->left)
q.push(q.front()->left);
if(q.front()->right)
q.push(q.front()->right);
q.pop();
}
}
return level;
}
// Driver code
int main()
{
int n;
cout<<"Enter total no.of nodes of the input Tree ( including NULL nodes ) : ";
cin>>n;
vector<int>v(n);
cout<<"Enter value of each node of the tree in level order ( if a node is NULL , enter -1 ) with spaces"<<endl;
for(int i=0;i<n;i++)
{
cin>>v[i]; //store the input values in a vector
}
//create the tree using input node values
struct Node* root=createTree(v);
//Call the function and print the result
cout<<"Height of the given tree is "<<FindHeightNonRecursive(root);
return 0;
}
/*
Input:
0 <= node->key < 1000000000
if node is NULL , -1 is entered as it's key
Sample Test Case 1
Input Binary Tree :
10
/ \
11 11
/ \ / \
5 NULL NULL 5
/ \ / \
4 NULL NULL 4
Input Format :
Example :
Enter total no.of nodes of the input Tree ( including NULL nodes ) : 15
Enter value of each node of the tree in level order ( if a node is NULL , enter -1 ) with spaces
10 11 11 5 -1 -1 5 4 -1 -1 -1 -1 -1 -1 4
Output Format :
Example : ( Output to the above input example )
Height of the given tree is 4
Sample Test Case 2
Input Binary Tree :
12
/ \
9 17
/ \ / \
8 10 NULL 18
Input Format :
Example :
Enter total no.of nodes of the input Tree ( including NULL nodes ) : 7
Enter value of each node of the tree in level order ( if a node is NULL , enter -1 ) with spaces
12 9 17 8 10 -1 18
Output Format :
Example : ( Output to the above input example )
Height of the given tree is 3
Time/Space Complexity
Time Complexity : O(n)
Where n is the no.of nodes
Space Complexity : O(n)
Where n is the no.of nodes
*/