We provide our implementation for PaP (Performativity-aware Predictor).
Create a conda environment
conda create -n PaP python=3.10
conda activate PaP
Please install packages with pip install -r requirements.txt
Clone the repository tllib Put the additional datasets files provided under PaP/datasets/ folder into Transfer-Learning-Library/tllib/vision/datasets directory (together with the init.py, also please add the dataset names into the dictionary, and include the imports)
You can reproduce our experiments in our paper with commands ./scripts/<exp_type>/<exp_name>
.
The directory structure should look like below
PaP/
|–– datasets/
| |–– __init__.py
| |–– agnews.py
| |–– amazon.py
| |–– cifar.py
| |–– imagenet100.py
| |–– terraincognita.py
|–– scripts/
| |–– additional_domain_shift
| |–– language
| |–– model_switching
| |–– vision
|–– architectures.py
|–– main.py
|–– nlp_utils.py
|–– performative_util.py
|–– utils.py
|–– requirements.txt
@misc{demirel2024adjusting,
title={Adjusting Pretrained Backbones for Performativity},
author={Berker Demirel and Lingjing Kong and Kun Zhang and Theofanis Karaletsos and Celestine Mendler-Dünner and Francesco Locatello},
year={2024},
eprint={2410.04499},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2410.04499},
}