-
Notifications
You must be signed in to change notification settings - Fork 3
/
train.py
342 lines (293 loc) · 21 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
import os
import argparse
import datetime
import time
import json
import random
import torch
import numpy as np
from torch.utils.tensorboard import SummaryWriter
from collections import defaultdict
import utils
from dataloaders import get_train_dataloader
from models import get_model
from schedulers import get_scheduler
from optimizers import get_optimizer
from losses import get_loss
from engine import *
from module.weight_methods import WeightMethods
def get_args_parser():
parser = argparse.ArgumentParser('MTD-GAN Deep-Learning Train script', add_help=False)
# Dataset parameters
parser.add_argument('--dataset', default="amc", type=str, help='dataset name')
parser.add_argument('--dataset-type-train', default="window_patch", type=str, help='dataset type train name')
parser.add_argument('--dataset-type-valid', default="window_patch", type=str, help='dataset type valid name')
parser.add_argument('--batch-size', default=72, type=int)
parser.add_argument('--train-num-workers', default=10, type=int)
parser.add_argument('--valid-num-workers', default=10, type=int)
# Model parameters
parser.add_argument('--model', default='Sequence_SkipHidden_Unet_ALL', type=str, help='model name')
parser.add_argument('--loss', default='Sequence_SkipHidden_Unet_loss', type=str, help='loss name')
parser.add_argument('--method', default='', help='multi-task weighting name')
# Optimizer parameters
parser.add_argument('--optimizer', default='adamw', type=str, metavar='OPTIMIZER', help='Optimizer (default: "AdamW"')
# Learning rate and schedule and Epoch parameters
parser.add_argument('--scheduler', default='poly_lr', type=str, metavar='scheduler', help='scheduler (default: "poly_learning_rate"')
parser.add_argument('--epochs', default=1000, type=int, help='Upstream 1000 epochs, Downstream 500 epochs')
parser.add_argument('--warmup-epochs', default=10, type=int, metavar='N', help='epochs to warmup LR, if scheduler supports')
parser.add_argument('--lr', default=5e-4, type=float, metavar='LR', help='learning rate (default: 5e-4)')
parser.add_argument('--min-lr', default=1e-5, type=float, metavar='LR', help='lower lr bound for cyclic schedulers that hit 0 (1e-5)')
# DataParrel or Single GPU train
parser.add_argument('--multi-gpu-mode', default='DataParallel', choices=['Single', 'DataParallel'], type=str, help='multi-gpu-mode')
parser.add_argument('--device', default='cuda', help='device to use for training / testing')
# Validation setting
parser.add_argument('--print-freq', default=10, type=int, metavar='N', help='print frequency (default: 10)')
parser.add_argument('--save-checkpoint-every', default=1, type=int, help='save the checkpoints every n epochs')
# Prediction and Save setting
parser.add_argument('--checkpoint-dir', default='', help='path where to save checkpoint or output')
parser.add_argument('--save-dir', default='', help='path where to prediction PNG save')
# Continue Training
parser.add_argument('--from-pretrained', default='', help='pre-trained from checkpoint')
parser.add_argument('--resume', default='', help='resume from checkpoint') # '' = None
# Memo
parser.add_argument('--memo', default='', help='memo for script')
return parser
# fix random seeds for reproducibility
random_seed = 2024
torch.manual_seed(random_seed)
torch.cuda.manual_seed(random_seed)
torch.cuda.manual_seed_all(random_seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(random_seed)
random.seed(random_seed)
def main(args):
start_epoch = 0
utils.print_args(args)
device = torch.device(args.device)
print("cpu == ", os.cpu_count())
# Dataloader
data_loader_train, data_loader_valid = get_train_dataloader(name=args.dataset, args=args)
# Model
model = get_model(name=args.model)
# Multi-GPU
if args.multi_gpu_mode == 'DataParallel':
if args.model == 'WGAN_VGG' or args.model == 'MAP_NN' or args.model == 'MTD_GAN' or args.model == 'Ablation_CLS' or args.model == 'Ablation_SEG' or args.model == 'Ablation_CLS_SEG' or args.model == 'Ablation_CLS_REC' or args.model == 'Ablation_SEG_REC' or args.model == 'Ablation_CLS_SEG_REC' or args.model == 'Ablation_CLS_SEG_REC_NDS' or args.model == 'Ablation_CLS_SEG_REC_RC' or args.model == 'Ablation_CLS_SEG_REC_NDS_RC' or args.model == 'Ablation_CLS_SEG_REC_NDS_RC_ResFFT' or args.model == 'MTD_GAN_All_One' or args.model == 'MTD_GAN_Method':
model.Generator = torch.nn.DataParallel(model.Generator)
model.Discriminator = torch.nn.DataParallel(model.Discriminator)
model.Generator.to(device)
model.Discriminator.to(device)
elif args.model == 'DU_GAN':
model.Generator = torch.nn.DataParallel(model.Generator)
model.Image_Discriminator = torch.nn.DataParallel(model.Image_Discriminator)
model.Grad_Discriminator = torch.nn.DataParallel(model.Grad_Discriminator)
model.Generator.to(device)
model.Image_Discriminator.to(device)
model.Grad_Discriminator.to(device)
else :
model = torch.nn.DataParallel(model)
model.to(device)
else :
model.to(device)
# Loss
loss = get_loss(name=args.loss)
# Optimizer & LR Schedule
if args.model == 'WGAN_VGG' or args.model == 'MAP_NN' or args.model == 'MTD_GAN' or args.model == 'Ablation_CLS' or args.model == 'Ablation_SEG' or args.model == 'Ablation_CLS_SEG' or args.model == 'Ablation_CLS_REC' or args.model == 'Ablation_SEG_REC' or args.model == 'Ablation_CLS_SEG_REC' or args.model == 'Ablation_CLS_SEG_REC_NDS' or args.model == 'Ablation_CLS_SEG_REC_RC' or args.model == 'Ablation_CLS_SEG_REC_NDS_RC' or args.model == 'Ablation_CLS_SEG_REC_NDS_RC_ResFFT' or args.model == 'MTD_GAN_All_One' or args.model == 'MTD_GAN_Method':
if (args.method) and (not args.resume):
# Weight Method such as PCGrad, CAGrad, MGDA (Ref: https://github.com/AvivNavon/nash-mtl/tree/7cc1694a276ca6f2f9426ab18b8698c786bff4f0)
weight_methods_parameters = defaultdict(dict)
weight_methods_parameters.update(dict(nashmtl=dict(update_weights_every=1, optim_niter=20), stl=dict(main_task=0), cagrad=dict(c=0.4), dwa=dict(temp=2.0)))
weight_method_D = WeightMethods(method=args.method, n_tasks=3, device=device, **weight_methods_parameters[args.method])
optimizer_D = torch.optim.AdamW([
dict(params=model.Discriminator.parameters(), lr=args.lr, betas=(0.9, 0.999), eps=1e-08, weight_decay=5e-4, amsgrad=False),
dict(params=weight_method_D.parameters(), lr=0.025, betas=(0.9, 0.999), eps=1e-08, weight_decay=5e-4, amsgrad=False)])
scheduler_D = get_scheduler(name=args.scheduler, optimizer=optimizer_D, args=args)
optimizer_G = get_optimizer(name=args.optimizer, model=model.Generator, lr=args.lr)
scheduler_G = get_scheduler(name=args.scheduler, optimizer=optimizer_G, args=args)
else:
weight_method_D = None
optimizer_D = get_optimizer(name=args.optimizer, model=model.Discriminator, lr=args.lr)
scheduler_D = get_scheduler(name=args.scheduler, optimizer=optimizer_D, args=args)
optimizer_G = get_optimizer(name=args.optimizer, model=model.Generator, lr=args.lr)
scheduler_G = get_scheduler(name=args.scheduler, optimizer=optimizer_G, args=args)
elif args.model == 'DU_GAN':
optimizer_Img_D = get_optimizer(name=args.optimizer,model=model.Image_Discriminator, lr=args.lr)
scheduler_Img_D = get_scheduler(name=args.scheduler, optimizer=optimizer_Img_D, args=args)
optimizer_Grad_D = get_optimizer(name=args.optimizer,model=model.Grad_Discriminator, lr=args.lr)
scheduler_Grad_D = get_scheduler(name=args.scheduler, optimizer=optimizer_Grad_D, args=args)
optimizer_G = get_optimizer(name=args.optimizer,model=model.Generator, lr=args.lr)
scheduler_G = get_scheduler(name=args.scheduler, optimizer=optimizer_G, args=args)
else :
optimizer = get_optimizer(name=args.optimizer,model=model, lr=args.lr)
scheduler = get_scheduler(name=args.scheduler, optimizer=optimizer, args=args)
# Resume
if args.resume:
print("Loading... Resume")
checkpoint = torch.load(args.resume, map_location='cpu')
checkpoint['model_state_dict'] = {k.replace('.module', ''):v for k,v in checkpoint['model_state_dict'].items()} # fix loading multi-gpu
model.load_state_dict(checkpoint['model_state_dict'])
start_epoch = checkpoint['epoch'] + 1
if args.model == 'WGAN_VGG' or args.model == 'MAP_NN' or args.model == 'MTD_GAN' or args.model == 'Ablation_CLS' or args.model == 'Ablation_SEG' or args.model == 'Ablation_CLS_SEG' or args.model == 'Ablation_CLS_REC' or args.model == 'Ablation_SEG_REC' or args.model == 'Ablation_CLS_SEG_REC' or args.model == 'Ablation_CLS_SEG_REC_NDS' or args.model == 'Ablation_CLS_SEG_REC_RC' or args.model == 'Ablation_CLS_SEG_REC_NDS_RC' or args.model == 'Ablation_CLS_SEG_REC_NDS_RC_ResFFT' or args.model == 'MTD_GAN_All_One' or args.model == 'MTD_GAN_Method':
optimizer_D.load_state_dict(checkpoint['optimizer_D'])
scheduler_D.load_state_dict(checkpoint['scheduler_D'])
optimizer_G.load_state_dict(checkpoint['optimizer_G'])
scheduler_G.load_state_dict(checkpoint['scheduler_G'])
utils.fix_optimizer(optimizer_D) # Optimizer Error fix...!
utils.fix_optimizer(optimizer_G)
elif args.model == 'DU_GAN':
optimizer_Img_D.load_state_dict(checkpoint['optimizer_Img_D'])
scheduler_Img_D.load_state_dict(checkpoint['scheduler_Img_D'])
optimizer_Grad_D.load_state_dict(checkpoint['optimizer_Grad_D'])
scheduler_Grad_D.load_state_dict(checkpoint['scheduler_Grad_D'])
optimizer_G.load_state_dict(checkpoint['optimizer_G'])
scheduler_G.load_state_dict(checkpoint['scheduler_G'])
utils.fix_optimizer(optimizer_Img_D)
utils.fix_optimizer(optimizer_Grad_D)
utils.fix_optimizer(optimizer_G)
else :
optimizer.load_state_dict(checkpoint['optimizer'])
scheduler.load_state_dict(checkpoint['scheduler'])
utils.fix_optimizer(optimizer)
# Tensorboard
tensorboard = SummaryWriter(args.checkpoint_dir + '/runs')
print('Writing Tensorboard logs to ', args.checkpoint_dir + '/runs')
# Etc traing setting
print(f"Start training for {args.epochs} epochs")
start_time = time.time()
# Whole Loop Train & Valid
for epoch in range(start_epoch, args.epochs):
# CNN based
# Previous
if args.model == 'RED_CNN' or args.model == 'ED_CNN':
train_stats = train_CNN_Based_Previous(model, data_loader_train, optimizer, device, epoch, args.print_freq, args.batch_size)
print("Averaged train_stats: ", train_stats)
for key, value in train_stats.items():
tensorboard.add_scalar(f'Train Stats/{key}', value, epoch)
valid_stats = valid_CNN_Based_Previous(model, loss, data_loader_valid, device, epoch, args.save_dir, args.print_freq)
print("Averaged valid_stats: ", valid_stats)
for key, value in valid_stats.items():
tensorboard.add_scalar(f'Valid Stats/{key}', value, epoch)
# Transformer based
elif args.model == 'Restormer' or args.model == 'CTformer':
train_stats = train_TR_Based_Previous(model, data_loader_train, optimizer, device, epoch, args.print_freq, args.batch_size)
print("Averaged train_stats: ", train_stats)
for key, value in train_stats.items():
tensorboard.add_scalar(f'Train Stats/{key}', value, epoch)
valid_stats = valid_TR_Based_Previous(model, loss, data_loader_valid, device, epoch, args.save_dir, args.print_freq)
print("Averaged valid_stats: ", valid_stats)
for key, value in valid_stats.items():
tensorboard.add_scalar(f'Valid Stats/{key}', value, epoch)
# GAN based
# Previous
elif args.model == 'WGAN_VGG':
train_stats = train_WGAN_VGG_Previous(model, data_loader_train, optimizer_G, optimizer_D, device, epoch, args.print_freq, args.batch_size)
print("Averaged train_stats: ", train_stats)
for key, value in train_stats.items():
tensorboard.add_scalar(f'Train Stats/{key}', value, epoch)
valid_stats = valid_WGAN_VGG_Previous(model, loss, data_loader_valid, device, epoch, args.save_dir, args.print_freq)
print("Averaged valid_stats: ", valid_stats)
for key, value in valid_stats.items():
tensorboard.add_scalar(f'Valid Stats/{key}', value, epoch)
elif args.model == 'MAP_NN':
train_stats = train_MAP_NN_Previous(model, data_loader_train, optimizer_G, optimizer_D, device, epoch, args.print_freq, args.batch_size)
print("Averaged train_stats: ", train_stats)
for key, value in train_stats.items():
tensorboard.add_scalar(f'Train Stats/{key}', value, epoch)
valid_stats = valid_MAP_NN_Previous(model, loss, data_loader_valid, device, epoch, args.save_dir, args.print_freq)
print("Averaged valid_stats: ", valid_stats)
for key, value in valid_stats.items():
tensorboard.add_scalar(f'Valid Stats/{key}', value, epoch)
elif args.model == 'DU_GAN':
train_stats = train_DUGAN_Previous(model, data_loader_train, optimizer_G, optimizer_Img_D, optimizer_Grad_D, device, epoch, args.print_freq, args.batch_size)
print("Averaged train_stats: ", train_stats)
for key, value in train_stats.items():
tensorboard.add_scalar(f'Train Stats/{key}', value, epoch)
valid_stats = valid_DUGAN_Previous(model, loss, data_loader_valid, device, epoch, args.save_dir, args.print_freq)
print("Averaged valid_stats: ", valid_stats)
for key, value in valid_stats.items():
tensorboard.add_scalar(f'Valid Stats/{key}', value, epoch)
# DN based
# Previous
elif args.model == 'DDPM' or args.model == 'DDIM' or args.model == 'PNDM' or args.model == 'DPM':
train_stats = train_DN_Previous(model, data_loader_train, optimizer, device, epoch, args.print_freq, args.batch_size)
print("Averaged train_stats: ", train_stats)
for key, value in train_stats.items():
tensorboard.add_scalar(f'Train Stats/{key}', value, epoch)
valid_stats = valid_DN_Previous(model, loss, data_loader_valid, device, epoch, args.save_dir, args.print_freq)
print("Averaged valid_stats: ", valid_stats)
for key, value in valid_stats.items():
tensorboard.add_scalar(f'Valid Stats/{key}', value, epoch)
# Ours
elif args.model == 'MTD_GAN' or args.model == 'Ablation_CLS' or args.model == 'Ablation_SEG' or args.model == 'Ablation_CLS_SEG' or args.model == 'Ablation_CLS_REC' or args.model == 'Ablation_SEG_REC' or args.model == 'Ablation_CLS_SEG_REC' or args.model == 'Ablation_CLS_SEG_REC_NDS' or args.model == 'Ablation_CLS_SEG_REC_RC' or args.model == 'Ablation_CLS_SEG_REC_NDS_RC' or args.model == 'Ablation_CLS_SEG_REC_NDS_RC_ResFFT' or args.model == 'MTD_GAN_All_One' or args.model == 'MTD_GAN_Method':
train_stats = train_MTD_GAN_Ours(model, data_loader_train, optimizer_G, optimizer_D, device, epoch, args.print_freq, args.batch_size, weight_method_D)
print("Averaged train_stats: ", train_stats)
for key, value in train_stats.items():
tensorboard.add_scalar(f'Train Stats/{key}', value, epoch)
valid_stats = valid_MTD_GAN_Ours(model, loss, data_loader_valid, device, epoch, args.save_dir, args.print_freq)
print("Averaged valid_stats: ", valid_stats)
for key, value in valid_stats.items():
tensorboard.add_scalar(f'Valid Stats/{key}', value, epoch)
# LR scheduler update
if args.model == 'WGAN_VGG' or args.model == 'MAP_NN' or args.model == 'MTD_GAN' or args.model == 'Ablation_CLS' or args.model == 'Ablation_SEG' or args.model == 'Ablation_CLS_SEG' or args.model == 'Ablation_CLS_REC' or args.model == 'Ablation_SEG_REC' or args.model == 'Ablation_CLS_SEG_REC' or args.model == 'Ablation_CLS_SEG_REC_NDS' or args.model == 'Ablation_CLS_SEG_REC_RC' or args.model == 'Ablation_CLS_SEG_REC_NDS_RC' or args.model == 'Ablation_CLS_SEG_REC_NDS_RC_ResFFT' or args.model == 'MTD_GAN_All_One' or args.model == 'MTD_GAN_Method':
scheduler_G.step(epoch)
scheduler_D.step(epoch)
elif args.model == 'DU_GAN':
scheduler_G.step(epoch)
scheduler_Img_D.step(epoch)
scheduler_Grad_D.step(epoch)
else:
scheduler.step(epoch)
# Save checkpoint & Prediction png
if epoch % args.save_checkpoint_every == 0:
checkpoint_path = args.checkpoint_dir + '/epoch_' + str(epoch) + '_checkpoint.pth'
if args.model == 'WGAN_VGG' or args.model == 'MAP_NN' or args.model == 'MTD_GAN' or args.model == 'Ablation_CLS' or args.model == 'Ablation_SEG' or args.model == 'Ablation_CLS_SEG' or args.model == 'Ablation_CLS_REC' or args.model == 'Ablation_SEG_REC' or args.model == 'Ablation_CLS_SEG_REC' or args.model == 'Ablation_CLS_SEG_REC_NDS' or args.model == 'Ablation_CLS_SEG_REC_RC' or args.model == 'Ablation_CLS_SEG_REC_NDS_RC' or args.model == 'Ablation_CLS_SEG_REC_NDS_RC_ResFFT' or args.model == 'MTD_GAN_All_One' or args.model == 'MTD_GAN_Method':
torch.save({
'model_state_dict': model.module.state_dict() if hasattr(model, 'module') else model.state_dict(), # Save only Single Gpu mode
'optimizer_D': optimizer_D.state_dict(),
'scheduler_D': scheduler_D.state_dict(),
'optimizer_G': optimizer_G.state_dict(),
'scheduler_G': scheduler_G.state_dict(),
'epoch': epoch,
'args': args,
}, checkpoint_path)
elif args.model == 'DU_GAN':
torch.save({
'model_state_dict': model.module.state_dict() if hasattr(model, 'module') else model.state_dict(), # Save only Single Gpu mode
'optimizer_Img_D': optimizer_Img_D.state_dict(),
'scheduler_Img_D': scheduler_Img_D.state_dict(),
'optimizer_Grad_D': optimizer_Grad_D.state_dict(),
'scheduler_Grad_D': scheduler_Grad_D.state_dict(),
'optimizer_G': optimizer_G.state_dict(),
'scheduler_G': scheduler_G.state_dict(),
'epoch': epoch,
'args': args,
}, checkpoint_path)
else :
torch.save({
'model_state_dict': model.module.state_dict() if hasattr(model, 'module') else model.state_dict(), # Save only Single Gpu mode
'optimizer': optimizer.state_dict(),
'scheduler': scheduler.state_dict(),
'epoch': epoch,
'args': args,
}, checkpoint_path)
# Log & Save
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
**{f'valid_{k}': v for k, v in valid_stats.items()},
'epoch': epoch}
with open(args.checkpoint_dir + "/log.txt", "a") as f:
f.write(json.dumps(log_stats) + "\n")
# Finish
tensorboard.close()
total_time_str = str(datetime.timedelta(seconds=int(time.time()-start_time)))
print('Training time {}'.format(total_time_str))
if __name__ == '__main__':
parser = argparse.ArgumentParser('MTD-GAN training script', parents=[get_args_parser()])
args = parser.parse_args()
# Make folder if not exist
os.makedirs(args.checkpoint_dir + "/args", mode=0o777, exist_ok=True)
os.makedirs(args.save_dir, mode=0o777, exist_ok=True)
# Save args to json
if not os.path.isfile(args.checkpoint_dir + "/args/args_" + datetime.datetime.now().strftime("%y%m%d_%H%M") + ".json"):
with open(args.checkpoint_dir + "/args/args_" + datetime.datetime.now().strftime("%y%m%d_%H%M") + ".json", "w") as f:
json.dump(args.__dict__, f, indent=2)
main(args)