Back | Next | Contents
Object Detection
Up next we have a realtime object detection camera demo available for C++ and Python:
detectnet-camera.cpp
(C++)detectnet-camera.py
(Python)
Similar to the previous detectnet-console
example, these camera applications use detection networks, except that they process a live video feed from a camera. detectnet-camera
accepts various optional command-line parameters, including:
--network
flag which changes the detection model being used (the default is SSD-Mobilenet-v2).--overlay
flag which can be comma-separated combinations ofbox
,labels
,conf
, andnone
- The default is
--overlay=box,labels,conf
which displays boxes, labels, and confidence values
- The default is
--alpha
value which sets the alpha blending value used during overlay (the default is120
).--threshold
value which sets the minimum threshold for detection (the default is0.5
).--camera
flag setting the camera device to use- MIPI CSI cameras are used by specifying the sensor index (
0
or1
, ect.) - V4L2 USB cameras are used by specifying their
/dev/video
node (/dev/video0
,/dev/video1
, ect.) - The default is to use MIPI CSI sensor 0 (
--camera=0
)
- MIPI CSI cameras are used by specifying the sensor index (
--width
and--height
flags setting the camera resolution (default is1280x720
)- The resolution should be set to a format that the camera supports.
- Query the available formats with the following commands:
$ sudo apt-get install v4l-utils $ v4l2-ctl --list-formats-ext
You can combine the usage of these flags as needed, and there are additional command line parameters available for loading custom models. Launch the application with the --help
flag to recieve more info, or see the Examples
readme.
Below are some typical scenarios for launching the program:
$ ./detectnet-camera # using SSD-Mobilenet-v2, default MIPI CSI camera (1280x720)
$ ./detectnet-camera --network=ssd-inception-v2 # using SSD-Inception-v2, default MIPI CSI camera (1280x720)
$ ./detectnet-camera --camera=/dev/video0 # using SSD-Mobilenet-v2, V4L2 camera /dev/video0 (1280x720)
$ ./detectnet-camera --width=640 --height=480 # using SSD-Mobilenet-v2, default MIPI CSI camera (640x480)
$ ./detectnet-camera.py # using SSD-Mobilenet-v2, default MIPI CSI camera (1280x720)
$ ./detectnet-camera.py --network=ssd-inception-v2 # using SSD-Inception-v2, default MIPI CSI camera (1280x720)
$ ./detectnet-camera.py --camera=/dev/video0 # using SSD-Mobilenet-v2, V4L2 camera /dev/video0 (1280x720)
$ ./detectnet-camera.py --width=640 --height=480 # using SSD-Mobilenet-v2, default MIPI CSI camera (640x480)
note: for example cameras to use, see these sections of the Jetson Wiki:
- Nano:https://eLinux.org/Jetson_Nano#Cameras
- Xavier:https://eLinux.org/Jetson_AGX_Xavier#Ecosystem_Products_.26_Cameras
- TX1/TX2: developer kits include an onboard MIPI CSI sensor module (0V5693)
Displayed in the OpenGL window are the live camera stream overlayed with the bounding boxes of the detected objects. Note that the SSD-based models currently have the highest performance. Here is one using the coco-dog
model:
# C++
$ ./detectnet-camera --network=coco-dog
# Python
$ ./detectnet-camera.py --network=coco-dog
If the desired objects aren't being detected in the video feed or you're getting spurious detections, try decreasing or increasing the detection threshold with the --threshold
parameter (the default is 0.5
).
Next, we'll cover creating the code for this camera detection app in Python.
Next | Coding Your Own Object Detection Program
Back | Detecting Objects from the Command Line
© 2016-2019 NVIDIA | Table of Contents