diff --git a/core/src/main/scala/org/apache/spark/rdd/PairRDDFunctions.scala b/core/src/main/scala/org/apache/spark/rdd/PairRDDFunctions.scala index d29a1a988..5aa0b030d 100644 --- a/core/src/main/scala/org/apache/spark/rdd/PairRDDFunctions.scala +++ b/core/src/main/scala/org/apache/spark/rdd/PairRDDFunctions.scala @@ -30,18 +30,15 @@ import scala.reflect.ClassTag import com.clearspring.analytics.stream.cardinality.HyperLogLog import org.apache.hadoop.conf.{Configurable, Configuration} -import org.apache.hadoop.fs.Path +import org.apache.hadoop.fs.{FileSystem, Path} import org.apache.hadoop.io.SequenceFile.CompressionType import org.apache.hadoop.io.compress.CompressionCodec import org.apache.hadoop.mapred.{FileOutputCommitter, FileOutputFormat, JobConf, OutputFormat} -import org.apache.hadoop.mapreduce.{OutputFormat => NewOutputFormat} -import org.apache.hadoop.mapreduce.{Job => NewAPIHadoopJob} -import org.apache.hadoop.mapreduce.{RecordWriter => NewRecordWriter} +import org.apache.hadoop.mapreduce.{OutputFormat => NewOutputFormat, Job => NewAPIHadoopJob, RecordWriter => NewRecordWriter, JobContext, SparkHadoopMapReduceUtil} import org.apache.hadoop.mapreduce.lib.output.{FileOutputFormat => NewFileOutputFormat} // SparkHadoopWriter and SparkHadoopMapReduceUtil are actually source files defined in Spark. import org.apache.hadoop.mapred.SparkHadoopWriter -import org.apache.hadoop.mapreduce.SparkHadoopMapReduceUtil import org.apache.spark._ import org.apache.spark.Partitioner.defaultPartitioner @@ -604,8 +601,12 @@ class PairRDDFunctions[K: ClassTag, V: ClassTag](self: RDD[(K, V)]) val job = new NewAPIHadoopJob(conf) job.setOutputKeyClass(keyClass) job.setOutputValueClass(valueClass) + val wrappedConf = new SerializableWritable(job.getConfiguration) - NewFileOutputFormat.setOutputPath(job, new Path(path)) + val outpath = new Path(path) + NewFileOutputFormat.setOutputPath(job, outpath) + val jobFormat = outputFormatClass.newInstance + jobFormat.checkOutputSpecs(job) val formatter = new SimpleDateFormat("yyyyMMddHHmm") val jobtrackerID = formatter.format(new Date()) val stageId = self.id @@ -633,7 +634,7 @@ class PairRDDFunctions[K: ClassTag, V: ClassTag](self: RDD[(K, V)]) committer.commitTask(hadoopContext) return 1 } - val jobFormat = outputFormatClass.newInstance + /* apparently we need a TaskAttemptID to construct an OutputCommitter; * however we're only going to use this local OutputCommitter for * setupJob/commitJob, so we just use a dummy "map" task. @@ -642,7 +643,7 @@ class PairRDDFunctions[K: ClassTag, V: ClassTag](self: RDD[(K, V)]) val jobTaskContext = newTaskAttemptContext(wrappedConf.value, jobAttemptId) val jobCommitter = jobFormat.getOutputCommitter(jobTaskContext) jobCommitter.setupJob(jobTaskContext) - val count = self.context.runJob(self, writeShard _).sum + self.context.runJob(self, writeShard _) jobCommitter.commitJob(jobTaskContext) } @@ -696,10 +697,10 @@ class PairRDDFunctions[K: ClassTag, V: ClassTag](self: RDD[(K, V)]) * MapReduce job. */ def saveAsHadoopDataset(conf: JobConf) { - val outputFormatClass = conf.getOutputFormat + val outputFormatInstance = conf.getOutputFormat val keyClass = conf.getOutputKeyClass val valueClass = conf.getOutputValueClass - if (outputFormatClass == null) { + if (outputFormatInstance == null) { throw new SparkException("Output format class not set") } if (keyClass == null) { @@ -712,6 +713,12 @@ class PairRDDFunctions[K: ClassTag, V: ClassTag](self: RDD[(K, V)]) logDebug("Saving as hadoop file of type (" + keyClass.getSimpleName + ", " + valueClass.getSimpleName + ")") + if (outputFormatInstance.isInstanceOf[FileOutputFormat[_, _]]) { + // FileOutputFormat ignores the filesystem parameter + val ignoredFs = FileSystem.get(conf) + conf.getOutputFormat.checkOutputSpecs(ignoredFs, conf) + } + val writer = new SparkHadoopWriter(conf) writer.preSetup() diff --git a/core/src/test/scala/org/apache/spark/FileSuite.scala b/core/src/test/scala/org/apache/spark/FileSuite.scala index 8ff02aef6..76173608e 100644 --- a/core/src/test/scala/org/apache/spark/FileSuite.scala +++ b/core/src/test/scala/org/apache/spark/FileSuite.scala @@ -24,9 +24,11 @@ import scala.io.Source import com.google.common.io.Files import org.apache.hadoop.io._ import org.apache.hadoop.io.compress.DefaultCodec +import org.apache.hadoop.mapred.FileAlreadyExistsException import org.scalatest.FunSuite import org.apache.spark.SparkContext._ +import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat class FileSuite extends FunSuite with LocalSparkContext { @@ -208,4 +210,44 @@ class FileSuite extends FunSuite with LocalSparkContext { assert(rdd.count() === 3) assert(rdd.count() === 3) } + + test ("prevent user from overwriting the empty directory (old Hadoop API)") { + sc = new SparkContext("local", "test") + val tempdir = Files.createTempDir() + val randomRDD = sc.parallelize(Array((1, "a"), (1, "a"), (2, "b"), (3, "c")), 1) + intercept[FileAlreadyExistsException] { + randomRDD.saveAsTextFile(tempdir.getPath) + } + } + + test ("prevent user from overwriting the non-empty directory (old Hadoop API)") { + sc = new SparkContext("local", "test") + val tempdir = Files.createTempDir() + val randomRDD = sc.parallelize(Array((1, "a"), (1, "a"), (2, "b"), (3, "c")), 1) + randomRDD.saveAsTextFile(tempdir.getPath + "/output") + assert(new File(tempdir.getPath + "/output/part-00000").exists() === true) + intercept[FileAlreadyExistsException] { + randomRDD.saveAsTextFile(tempdir.getPath + "/output") + } + } + + test ("prevent user from overwriting the empty directory (new Hadoop API)") { + sc = new SparkContext("local", "test") + val tempdir = Files.createTempDir() + val randomRDD = sc.parallelize(Array(("key1", "a"), ("key2", "a"), ("key3", "b"), ("key4", "c")), 1) + intercept[FileAlreadyExistsException] { + randomRDD.saveAsNewAPIHadoopFile[TextOutputFormat[String, String]](tempdir.getPath) + } + } + + test ("prevent user from overwriting the non-empty directory (new Hadoop API)") { + sc = new SparkContext("local", "test") + val tempdir = Files.createTempDir() + val randomRDD = sc.parallelize(Array(("key1", "a"), ("key2", "a"), ("key3", "b"), ("key4", "c")), 1) + randomRDD.saveAsTextFile(tempdir.getPath + "/output") + assert(new File(tempdir.getPath + "/output/part-00000").exists() === true) + intercept[FileAlreadyExistsException] { + randomRDD.saveAsNewAPIHadoopFile[TextOutputFormat[String, String]](tempdir.getPath) + } + } }