-
Notifications
You must be signed in to change notification settings - Fork 3
/
ui4.py
301 lines (231 loc) · 10.7 KB
/
ui4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
import gradio as gr
import random
import time
from privateGPT import parse_arguments
messages = []
kill = 0
#!/usr/bin/env python3
from dotenv import load_dotenv
from langchain.chains import RetrievalQA
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.vectorstores import Chroma
from langchain.llms import GPT4All, LlamaCpp
from langchain.document_loaders import TextLoader, PDFMinerLoader, CSVLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.docstore.document import Document
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.docstore.document import Document
from langchain import HuggingFacePipeline
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.embeddings import HuggingFaceInstructEmbeddings
from dotenv import load_dotenv
from multiprocessing import Pool
from tqdm import tqdm
from langchain.document_loaders import (
CSVLoader,
EverNoteLoader,
PDFMinerLoader,
TextLoader,
UnstructuredEmailLoader,
UnstructuredEPubLoader,
UnstructuredHTMLLoader,
UnstructuredMarkdownLoader,
UnstructuredODTLoader,
UnstructuredPowerPointLoader,
UnstructuredWordDocumentLoader,
)
import os
import glob
import argparse
from time import sleep
from multiprocessing import Process
chunk_size = 256 #512
chunk_overlap = 50
from dotenv import load_dotenv
from langchain.chains import RetrievalQA
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.vectorstores import Chroma
from langchain.llms import GPT4All, LlamaCpp
load_dotenv()
#embeddings_model_name = os.environ.get("EMBEDDINGS_MODEL_NAME")
#persist_directory = os.environ.get('PERSIST_DIRECTORY')
model_type = os.environ.get('MODEL_TYPE')
model_path = os.environ.get('MODEL_PATH')
model_n_ctx = os.environ.get('MODEL_N_CTX')
from constants import CHROMA_SETTINGS
global qa
args = parse_arguments()
#embeddings = HuggingFaceEmbeddings(model_name=embeddings_model_name)
model_name = "sentence-transformers/all-mpnet-base-v2"
#model_name = "sentence-transformers/LaBSE"
#model_name= 'intfloat/e5-large-v2'
model_name = 'all-MiniLM-L6-v2'
model_kwargs = {'device': 'cpu'}
encode_kwargs = {'normalize_embeddings': False}
hf = HuggingFaceEmbeddings(
model_name=model_name,
model_kwargs=model_kwargs,
encode_kwargs=encode_kwargs
)
documents = []
a=glob.glob("source_documents/*.txt")
for i in range(len(a)):
print(a[i])
documents.extend(TextLoader(a[i]).load())
print(TextLoader(a[i]).load())
a=glob.glob("source_documents/*.html")
for i in range(len(a)):
documents.extend(UnstructuredHTMLLoader(a[i]).load())
a=glob.glob("source_documents/*.pdf")
for i in range(len(a)):
documents.extend(PDFMinerLoader(a[i]).load())
a=glob.glob("source_documents/*.csv")
for i in range(len(a)):
documents.extend(CSVLoader(a[i]).load())
a=glob.glob("source_documents/*.ppt")
for i in range(len(a)):
documents.extend(UnstructuredPowerPointLoader(a[i]).load())
a=glob.glob("source_documents/*.pptx")
for i in range(len(a)):
documents.extend(UnstructuredPowerPointLoader(a[i]).load())
a=glob.glob("source_documents/*.docx")
for i in range(len(a)):
documents.extend(UnstructuredWordDocumentLoader(a[i]).load())
a=glob.glob("source_documents/*.ppt")
for i in range(len(a)):
documents.extend(UnstructuredPowerPointLoader(a[i]).load())
#db = Chroma(persist_directory=persist_directory, embedding_function=embeddings, client_settings=CHROMA_SETTINGS)
#retriever = db.as_retriever()
# activate/deactivate the streaming StdOut callback for LLMs
callbacks = [] if args.mute_stream else [StreamingStdOutCallbackHandler()]
# Prepare the LLM
text_splitter = CharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
texts = text_splitter.split_documents(documents)
db = Chroma.from_documents(texts, hf)
model_id="sentence-transformers/all-MiniLM-L6-v2"
model_id='digitous/Alpacino30b'
#model_id="google/flan-t5-base"
#model_id='tiiuae/falcon-40b'
model_id="google/flan-t5-large"
llm = HuggingFacePipeline.from_model_id(model_id=model_id, task="text2text-generation", model_kwargs={"temperature":3e-1, "max_length" : chunk_size}) #, trust_remote_code=True)
#llm = HuggingFacePipeline.from_model_id(model_id=model_id, task="question-answering", model_kwargs={"temperature":1e-1, "max_length" : 512})
retriever = db.as_retriever(search_type='similarity', search_kwargs={"k": 3} )
#do not increase k beyond 3, else
callbacks = []
#qa = RetrievalQA.from_chain_type(llm=llm, chain_type="map_reduce", retriever=retriever, return_source_documents=True)
#qa = RetrievalQA.from_chain_type(llm=llm, chain_type="refine", retriever=retriever, return_source_documents=True)
qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=True)
def chat_gpt(qa, question):
args = parse_arguments()
query = question
res = qa(query)
answer, docs = res['result'], [] if args.hide_source else res['source_documents']
# Print the relevant sources used#ggml-gpt4all-j-v1.3-groovy.bin for the answer
for document in docs:
print("\n> " + document.metadata["source"] + ":")
#print(document.page_content)
metadata=document.metadata["source"]
doc=document.page_content
return answer, doc,metadata
def parse_arguments():
parser = argparse.ArgumentParser(description='privateGPT: Ask questions to your documents without an internet connection, '
'using the power of LLMs.')
parser.add_argument("--hide-source", "-S", action='store_true',
help='Use this flag to disable printing of source documents used for answers.')
parser.add_argument("--mute-stream", "-M",
action='store_true',
help='Use this flag to disable the streaming StdOut callback for LLMs.')
return parser.parse_args()
with gr.Blocks() as mychatbot: # Blocks is a low-level API that allows
# you to create custom web applications
chatbot = gr.Chatbot(label="Chat with Professor Bhagwan: Ask questions to your documents without an internet connection") # displays a chatbot
question = gr.Textbox(label="Question") # for user to ask a question
clear = gr.Button("Clear Conversation History") # Clear button
kill = gr.Button("Stop Current Search") # Clear button
# function to clear the conversation
def clear_messages():
global messages
messages = [] # reset the messages list
def chat_model():
# Parse the command line arguments
global qa
args = parse_arguments()
#embeddings = HuggingFaceEmbeddings(model_name=embeddings_model_name)
model_name = "sentence-transformers/all-mpnet-base-v2"
model_name = 'all-MiniLM-L6-v2'
#model_name = "sentence-transformers/LaBSE"
#model_name= 'intfloat/e5-large-v2'
model_kwargs = {'device': 'cpu'}
encode_kwargs = {'normalize_embeddings': False}
hf = HuggingFaceEmbeddings(
model_name=model_name,
model_kwargs=model_kwargs,
encode_kwargs=encode_kwargs
)
documents = []
a=glob.glob("source_documents/*.txt")
for i in range(len(a)):
documents.extend(TextLoader(a[i]).load())
a=glob.glob("source_documents/*.html")
for i in range(len(a)):
documents.extend(UnstructuredHTMLLoader(a[i]).load())
a=glob.glob("source_documents/*.pdf")
for i in range(len(a)):
documents.extend(PDFMinerLoader(a[i]).load())
#db = Chroma(persist_directory=persist_directory, embedding_function=embeddings, client_settings=CHROMA_SETTINGS)
#retriever = db.as_retriever()
# activate/deactivate the streaming StdOut callback for LLMs
callbacks = [] if args.mute_stream else [StreamingStdOutCallbackHandler()]
# Prepare the LLM
match model_type:
case "LlamaCpp":
llm = LlamaCpp(model_path=model_path, n_ctx=model_n_ctx, callbacks=callbacks, verbose=False)
case "GPT4All":
llm = GPT4All(model=model_path, n_ctx=model_n_ctx, backend='gptj', callbacks=callbacks, verbose=False)
case _default:
print(f"Model {model_type} not supported!")
exit;
text_splitter = CharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
texts = text_splitter.split_documents(documents)
db = Chroma.from_documents(texts, hf)
model_id="sentence-transformers/all-MiniLM-L6-v2"
model_id="google/flan-t5-base"
#model_id='tiiuae/falcon-40b'
llm = HuggingFacePipeline.from_model_id(model_id=model_id, task="text2text-generation", model_kwargs={"temperature":1e-1, "max_length" : 512}) #, trust_remote_code=True)
#llm = HuggingFacePipeline.from_model_id(model_id=model_id, task="question-answering", model_kwargs={"temperature":1e-1, "max_length" : 512})
retriever = db.as_retriever(search_type='similarity', search_kwargs={"k": 3} )
callbacks = []
qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=True)
def kill_search():
print("killing")
kill =1
#exit() # reset the messages list
def chat(message, chat_history, kill):
global messages
print("chat function launched...")
print(message)
messages.append({"role": "user", "content": message})
response, doc, metadata = chat_gpt(qa, message)
print("private gpt response recieved...")
print(response)
content = response + "\n" + "Sources:"+ "\n >" + metadata+ ":" +"\n" +"Content: "+"\n" +doc
#['choices'][0]['message']['content']
chat_history.append((message, content))
return "", chat_history
# wire up the event handler for Submit button (when user press Enter)
question.submit(fn = chat,
inputs = [question, chatbot],
outputs = [question, chatbot])
# wire up the event handler for the Clear Conversation button
clear.click(fn = clear_messages,
inputs = None,
outputs = chatbot,
queue = False)
kill.click(fn = kill_search,
inputs = None,
outputs = chatbot,
queue = False)
mychatbot.launch(share=True)