This repository has been archived by the owner on Jun 3, 2020. It is now read-only.
forked from Justin-Tan/generative-compression
-
Notifications
You must be signed in to change notification settings - Fork 0
/
model.py
182 lines (148 loc) · 9.94 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
#!/usr/bin/python3
import tensorflow as tf
import numpy as np
import glob, time, os
from network import Network
from data import Data
from config import directories
from utils import Utils
class Model():
def __init__(self, config, paths, dataset, name='gan_compression', evaluate=False):
# Build the computational graph
print('Building computational graph ...')
self.G_global_step = tf.Variable(0, trainable=False)
self.D_global_step = tf.Variable(0, trainable=False)
self.handle = tf.placeholder(tf.string, shape=[])
self.training_phase = tf.placeholder(tf.bool)
# >>> Data handling
self.path_placeholder = tf.placeholder(paths.dtype, paths.shape)
self.test_path_placeholder = tf.placeholder(paths.dtype)
self.semantic_map_path_placeholder = tf.placeholder(paths.dtype, paths.shape)
self.test_semantic_map_path_placeholder = tf.placeholder(paths.dtype)
train_dataset = Data.load_dataset(self.path_placeholder,
config.batch_size,
augment=False,
training_dataset=dataset,
use_conditional_GAN=config.use_conditional_GAN,
semantic_map_paths=self.semantic_map_path_placeholder)
test_dataset = Data.load_dataset(self.test_path_placeholder,
config.batch_size,
augment=False,
training_dataset=dataset,
use_conditional_GAN=config.use_conditional_GAN,
semantic_map_paths=self.test_semantic_map_path_placeholder,
test=True)
self.iterator = tf.data.Iterator.from_string_handle(self.handle,
train_dataset.output_types,
train_dataset.output_shapes)
self.train_iterator = train_dataset.make_initializable_iterator()
self.test_iterator = test_dataset.make_initializable_iterator()
if config.use_conditional_GAN:
self.example, self.semantic_map = self.iterator.get_next()
else:
self.example = self.iterator.get_next()
# Global generator: Encode -> quantize -> reconstruct
# =======================================================================================================>>>
with tf.variable_scope('generator'):
self.feature_map = Network.encoder(self.example, config, self.training_phase, config.channel_bottleneck)
self.w_hat = Network.quantizer(self.feature_map, config)
if config.use_conditional_GAN:
self.semantic_feature_map = Network.encoder(self.semantic_map, config, self.training_phase,
config.channel_bottleneck, scope='semantic_map')
self.w_hat_semantic = Network.quantizer(self.semantic_feature_map, config, scope='semantic_map')
self.w_hat = tf.concat([self.w_hat, self.w_hat_semantic], axis=-1)
if config.sample_noise is True:
print('Sampling noise...')
# noise_prior = tf.contrib.distributions.Uniform(-1., 1.)
# self.noise_sample = noise_prior.sample([tf.shape(self.example)[0], config.noise_dim])
noise_prior = tf.contrib.distributions.MultivariateNormalDiag(loc=tf.zeros([config.noise_dim]), scale_diag=tf.ones([config.noise_dim]))
v = noise_prior.sample(tf.shape(self.example)[0])
Gv = Network.dcgan_generator(v, config, self.training_phase, C=config.channel_bottleneck, upsample_dim=config.upsample_dim)
self.z = tf.concat([self.w_hat, Gv], axis=-1)
else:
self.z = self.w_hat
self.reconstruction = Network.decoder(self.z, config, self.training_phase, C=config.channel_bottleneck)
print('Real image shape:', self.example.get_shape().as_list())
print('Reconstruction shape:', self.reconstruction.get_shape().as_list())
if evaluate:
return
# Pass generated, real images to discriminator
# =======================================================================================================>>>
if config.use_conditional_GAN:
# Model conditional distribution
self.example = tf.concat([self.example, self.semantic_map], axis=-1)
self.reconstruction = tf.concat([self.reconstruction, self.semantic_map], axis=-1)
if config.multiscale:
D_x, D_x2, D_x4, *Dk_x = Network.multiscale_discriminator(self.example, config, self.training_phase,
use_sigmoid=config.use_vanilla_GAN, mode='real')
D_Gz, D_Gz2, D_Gz4, *Dk_Gz = Network.multiscale_discriminator(self.reconstruction, config, self.training_phase,
use_sigmoid=config.use_vanilla_GAN, mode='reconstructed', reuse=True)
else:
D_x = Network.discriminator(self.example, config, self.training_phase, use_sigmoid=config.use_vanilla_GAN)
D_Gz = Network.discriminator(self.reconstruction, config, self.training_phase, use_sigmoid=config.use_vanilla_GAN, reuse=True)
# Loss terms
# =======================================================================================================>>>
if config.use_vanilla_GAN is True:
# Minimize JS divergence
D_loss_real = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=D_x,
labels=tf.ones_like(D_x)))
D_loss_gen = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=D_Gz,
labels=tf.zeros_like(D_Gz)))
self.D_loss = D_loss_real + D_loss_gen
# G_loss = max log D(G(z))
self.G_loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=D_Gz,
labels=tf.ones_like(D_Gz)))
else:
# Minimize $\chi^2$ divergence
self.D_loss = tf.reduce_mean(tf.square(D_x - 1.)) + tf.reduce_mean(tf.square(D_Gz))
self.G_loss = tf.reduce_mean(tf.square(D_Gz - 1.))
if config.multiscale:
self.D_loss += tf.reduce_mean(tf.square(D_x2 - 1.)) + tf.reduce_mean(tf.square(D_x4 - 1.))
self.D_loss += tf.reduce_mean(tf.square(D_Gz2)) + tf.reduce_mean(tf.square(D_Gz4))
distortion_penalty = config.lambda_X * tf.losses.mean_squared_error(self.example, self.reconstruction)
self.G_loss += distortion_penalty
if config.use_feature_matching_loss: # feature extractor for generator
D_x_layers, D_Gz_layers = [j for i in Dk_x for j in i], [j for i in Dk_Gz for j in i]
feature_matching_loss = tf.reduce_sum([tf.reduce_mean(tf.abs(Dkx-Dkz)) for Dkx, Dkz in zip(D_x_layers, D_Gz_layers)])
self.G_loss += config.feature_matching_weight * feature_matching_loss
# Optimization
# =======================================================================================================>>>
G_opt = tf.train.AdamOptimizer(learning_rate=config.G_learning_rate, beta1=0.5)
D_opt = tf.train.AdamOptimizer(learning_rate=config.D_learning_rate, beta1=0.5)
theta_G = Utils.scope_variables('generator')
theta_D = Utils.scope_variables('discriminator')
# print('Generator parameters:', theta_G)
# print('Discriminator parameters:', theta_D)
G_update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS, scope='generator')
D_update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS, scope='discriminator')
# Execute the update_ops before performing the train_step
with tf.control_dependencies(G_update_ops):
self.G_opt_op = G_opt.minimize(self.G_loss, name='G_opt', global_step=self.G_global_step, var_list=theta_G)
with tf.control_dependencies(D_update_ops):
self.D_opt_op = D_opt.minimize(self.D_loss, name='D_opt', global_step=self.D_global_step, var_list=theta_D)
G_ema = tf.train.ExponentialMovingAverage(decay=config.ema_decay, num_updates=self.G_global_step)
G_maintain_averages_op = G_ema.apply(theta_G)
D_ema = tf.train.ExponentialMovingAverage(decay=config.ema_decay, num_updates=self.D_global_step)
D_maintain_averages_op = D_ema.apply(theta_D)
with tf.control_dependencies(G_update_ops+[self.G_opt_op]):
self.G_train_op = tf.group(G_maintain_averages_op)
with tf.control_dependencies(D_update_ops+[self.D_opt_op]):
self.D_train_op = tf.group(D_maintain_averages_op)
# >>> Monitoring
# tf.summary.scalar('learning_rate', learning_rate)
tf.summary.scalar('generator_loss', self.G_loss)
tf.summary.scalar('discriminator_loss', self.D_loss)
tf.summary.scalar('distortion_penalty', distortion_penalty)
if config.use_feature_matching_loss:
tf.summary.scalar('feature_matching_loss', feature_matching_loss)
tf.summary.scalar('G_global_step', self.G_global_step)
tf.summary.scalar('D_global_step', self.D_global_step)
tf.summary.image('real_images', self.example[:,:,:,:3], max_outputs=4)
tf.summary.image('compressed_images', self.reconstruction[:,:,:,:3], max_outputs=4)
if config.use_conditional_GAN:
tf.summary.image('semantic_map', self.semantic_map, max_outputs=4)
self.merge_op = tf.summary.merge_all()
self.train_writer = tf.summary.FileWriter(
os.path.join(directories.tensorboard, '{}_train_{}'.format(name, time.strftime('%d-%m_%I:%M'))), graph=tf.get_default_graph())
self.test_writer = tf.summary.FileWriter(
os.path.join(directories.tensorboard, '{}_test_{}'.format(name, time.strftime('%d-%m_%I:%M'))))