-
wed 8/29 - intro & syllabus
-
fri 8/31 - git & github
-
wed 9/5 - python & ipython
-
fri 9/7 - python
-
mon 9/10 - python (data types)
-
wed 9/12 - python (data types)
-
fri 9/14 - numpy - HOMEWORK 1 ASSIGNED
-
mon 9/17 - numpy
-
wed 9/19 - numpy
-
fri 9/21 - psth, spike triggered average - HOMEWORK 1 DUE - HOMEWORK 2 ASSIGNED
-
mon 9/24 - matplotlib
-
wed 9/26 - matplotlib
-
fri 9/28 - ipyvolume, pycortex - HOMEWORK 2 DUE - HOMEWORK 3 ASSIGNED
-
mon 10/1 - probability (bayes theorem, bernoulli, binomial, poisson)
-
wed 10/3 - probability (gaussians, central limit theorem)
-
fri 10/5 - descriptive statistics - HOMEWORK 3 DUE - HOMEWORK 4 ASSIGNED
-
mon 10/8 - multivariate gaussians
-
wed 10/10 - bootstrap
-
fri 10/12 - confidence intervals
-
mon 10/15 - hypothesis testing (p-value)
-
wed 10/17 - likelihood ratio test
-
fri 10/19 - permutation and bootstrap test - HOMEWORK 4 DUE - HOMEWORK 5 ASSIGNED
-
mon 10/22 - timeseries
-
wed 10/24 - fourier transform, spectrum
-
fri 10/26 - filtering
-
mon 10/29 - wavelets, spectrograms
-
wed 10/31 - autoregression
-
fri 11/2 - (re)sampling - HOMEWORK 5 DUE - HOMEWORK 6 ASSIGNED
-
mon 11/5 - linear regression
-
wed 11/7 - linear regression
-
fri 11/9 - regularization
-
mon 11/12 - logistic regression
-
wed 11/14 - support vector machines
-
fri 11/16 - principal components analysis - HOMEWORK 6 DUE - HOMEWORK 7 ASSIGNED
-
mon 11/19 - principal components analysis
-
wed 11/21 - non-negative matrix factorization
-
fri 11/23 - k-means
-
mon 11/26 - mixtures of gaussians
-
wed 11/28 - agglomerative clustering
-
fri 11/30 - tbd - HOMEWORK 7 DUE
-
mon 12/3 - tbd
-
wed 12/5 - guest lecture!
-
fri 12/7 - tbd
-
mon 12/10 - last day of class - another tbd!