-
Notifications
You must be signed in to change notification settings - Fork 128
/
main.py
224 lines (191 loc) · 9.36 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
#/usr/bin/python
from __future__ import print_function
import argparse
import torch
import pickle
import numpy as np
import os
import math
import random
import sys
import matplotlib.pyplot as plt
import data
import scipy.io
from torch import nn, optim
from torch.nn import functional as F
from pathlib import Path
from gensim.models.fasttext import FastText as FT_gensim
import tracemalloc
from etm import ETM
from utils import nearest_neighbors, get_topic_coherence, get_topic_diversity
parser = argparse.ArgumentParser(description='The Embedded Topic Model')
### data and file related arguments
parser.add_argument('--dataset', type=str, default='20ng', help='name of corpus')
parser.add_argument('--data_path', type=str, default='data/20ng', help='directory containing data')
parser.add_argument('--emb_path', type=str, default='data/20ng_embeddings.txt', help='directory containing word embeddings')
parser.add_argument('--save_path', type=str, default='./results', help='path to save results')
parser.add_argument('--batch_size', type=int, default=1000, help='input batch size for training')
### model-related arguments
parser.add_argument('--num_topics', type=int, default=50, help='number of topics')
parser.add_argument('--rho_size', type=int, default=300, help='dimension of rho')
parser.add_argument('--emb_size', type=int, default=300, help='dimension of embeddings')
parser.add_argument('--t_hidden_size', type=int, default=800, help='dimension of hidden space of q(theta)')
parser.add_argument('--theta_act', type=str, default='relu', help='tanh, softplus, relu, rrelu, leakyrelu, elu, selu, glu)')
parser.add_argument('--train_embeddings', type=int, default=0, help='whether to fix rho or train it')
### optimization-related arguments
parser.add_argument('--lr', type=float, default=0.005, help='learning rate')
parser.add_argument('--lr_factor', type=float, default=4.0, help='divide learning rate by this...')
parser.add_argument('--epochs', type=int, default=20, help='number of epochs to train...150 for 20ng 100 for others')
parser.add_argument('--mode', type=str, default='train', help='train or eval model')
parser.add_argument('--optimizer', type=str, default='adam', help='choice of optimizer')
parser.add_argument('--seed', type=int, default=2019, help='random seed (default: 1)')
parser.add_argument('--enc_drop', type=float, default=0.0, help='dropout rate on encoder')
parser.add_argument('--clip', type=float, default=0.0, help='gradient clipping')
parser.add_argument('--nonmono', type=int, default=10, help='number of bad hits allowed')
parser.add_argument('--wdecay', type=float, default=1.2e-6, help='some l2 regularization')
parser.add_argument('--anneal_lr', type=int, default=0, help='whether to anneal the learning rate or not')
parser.add_argument('--bow_norm', type=int, default=1, help='normalize the bows or not')
### evaluation, visualization, and logging-related arguments
parser.add_argument('--num_words', type=int, default=10, help='number of words for topic viz')
parser.add_argument('--log_interval', type=int, default=2, help='when to log training')
parser.add_argument('--visualize_every', type=int, default=10, help='when to visualize results')
parser.add_argument('--eval_batch_size', type=int, default=1000, help='input batch size for evaluation')
parser.add_argument('--load_from', type=str, default='', help='the name of the ckpt to eval from')
parser.add_argument('--tc', type=int, default=0, help='whether to compute topic coherence or not')
parser.add_argument('--td', type=int, default=0, help='whether to compute topic diversity or not')
args = parser.parse_args()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print('\n')
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(args.seed)
## get data
# 1. vocabulary
vocab, training_set, valid, test_1, test_2 = data.get_data(doc_terms_file_name="tf_idf_doc_terms_matrix_time_window_1",
terms_filename="tf_idf_terms_time_window_1")
vocab_size = len(vocab)
args.vocab_size = vocab_size
# 1. training data
args.num_docs_train = training_set.shape[0]
# 2. dev set
args.num_docs_valid = valid.shape[0]
# 3. test data
args.num_docs_test = test_1.shape[0] + test_2.shape[0]
args.num_docs_test_1 = test_1.shape[0]
args.num_docs_test_2 = test_2.shape[0]
embeddings = None
if not args.train_embeddings:
embeddings = data.read_embedding_matrix(vocab, device, load_trainned=False)
args.embeddings_dim = embeddings.size()
print('=*'*100)
print('Training an Embedded Topic Model on {} with the following settings: {}'.format(args.dataset.upper(), args))
print('=*'*100)
## define checkpoint
if not os.path.exists(args.save_path):
os.makedirs(args.save_path)
if args.mode == 'eval':
ckpt = args.load_from
else:
ckpt = Path.cwd().joinpath(args.save_path,
'etm_{}_K_{}_Htheta_{}_Optim_{}_Clip_{}_ThetaAct_{}_Lr_{}_Bsz_{}_RhoSize_{}_trainEmbeddings_{}'.format(
args.dataset, args.num_topics, args.t_hidden_size, args.optimizer, args.clip, args.theta_act,
args.lr, args.batch_size, args.rho_size, args.train_embeddings))
## define model and optimizer
model = ETM(args.num_topics,
vocab_size,
args.t_hidden_size,
args.rho_size,
args.emb_size,
args.theta_act,
embeddings,
args.train_embeddings,
args.enc_drop).to(device)
print('model: {}'.format(model))
optimizer = model.get_optimizer(args)
tracemalloc.start()
if args.mode == 'train':
## train model on data
best_epoch = 0
best_val_ppl = 1e9
all_val_ppls = []
print('\n')
print('Visualizing model quality before training...', args.epochs)
#model.visualize(args, vocabulary = vocab)
print('\n')
for epoch in range(0, args.epochs):
print("I am training for epoch", epoch)
model.train_for_epoch(epoch, args, training_set)
val_ppl = model.evaluate(args, 'val', training_set, vocab, test_1, test_2)
print("The validation scores", val_ppl)
if val_ppl < best_val_ppl:
with open(ckpt, 'wb') as f:
torch.save(model, f)
best_epoch = epoch
best_val_ppl = val_ppl
else:
## check whether to anneal lr
lr = optimizer.param_groups[0]['lr']
if args.anneal_lr and (len(all_val_ppls) > args.nonmono and val_ppl > min(all_val_ppls[:-args.nonmono]) and lr > 1e-5):
optimizer.param_groups[0]['lr'] /= args.lr_factor
if epoch % args.visualize_every == 0:
model.visualize(args, vocabulary = vocab)
all_val_ppls.append(val_ppl)
with open(ckpt, 'rb') as f:
model = torch.load(f)
model = model.to(device)
val_ppl = model.evaluate(args, 'val', training_set, vocab, test_1, test_2)
else:
with open(ckpt, 'rb') as f:
model = torch.load(f)
model = model.to(device)
model.eval()
with torch.no_grad():
## get document completion perplexities
test_ppl = model.evaluate(args, 'val', training_set, vocab, test_1, test_2)
## get most used topics
indices = torch.tensor(range(args.num_docs_train))
indices = torch.split(indices, args.batch_size)
thetaAvg = torch.zeros(1, args.num_topics).to(device)
theta_weighted_average = torch.zeros(1, args.num_topics).to(device)
cnt = 0
for idx, indice in enumerate(indices):
data_batch = data.get_batch(training_set, indice, device)
sums = data_batch.sum(1).unsqueeze(1)
cnt += sums.sum(0).squeeze().cpu().numpy()
if args.bow_norm:
normalized_data_batch = data_batch / sums
else:
normalized_data_batch = data_batch
theta, _ = model.get_theta(normalized_data_batch)
thetaAvg += theta.sum(0).unsqueeze(0) / args.num_docs_train
weighed_theta = sums * theta
theta_weighted_average += weighed_theta.sum(0).unsqueeze(0)
if idx % 100 == 0 and idx > 0:
print('batch: {}/{}'.format(idx, len(indices)))
theta_weighted_average = theta_weighted_average.squeeze().cpu().numpy() / cnt
print('\nThe 10 most used topics are {}'.format(theta_weighted_average.argsort()[::-1][:10]))
## show topics
beta = model.get_beta()
topic_indices = list(np.random.choice(args.num_topics, 10)) # 10 random topics
print('\n')
for k in range(args.num_topics):#topic_indices:
gamma = beta[k]
top_words = list(gamma.cpu().numpy().argsort()[-args.num_words+1:][::-1])
topic_words = [vocab[a] for a in top_words]
print('Topic {}: {}'.format(k, topic_words))
if args.train_embeddings:
## show etm embeddings
try:
rho_etm = model.rho.weight.cpu()
except:
rho_etm = model.rho.cpu()
queries = ['felix', 'covid', 'pprd', '100jours', 'beni', 'adf', 'muyembe', 'fally']
print('\n')
print('ETM embeddings...')
for word in queries:
print('word: {} .. etm neighbors: {}'.format(word, nearest_neighbors(word, rho_etm, vocab)))
print('\n')
current, peak = tracemalloc.get_traced_memory()
print(f"Current memory usage is {current / 10**6}MB; Peak was {peak / 10**6}MB")
tracemalloc.stop()