-
-
Notifications
You must be signed in to change notification settings - Fork 2.6k
/
radixsort.go
66 lines (56 loc) · 1.71 KB
/
radixsort.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
// radixsort.go
// description: Implementation of in-place radixsort algorithm
// details:
// A simple in-place quicksort algorithm implementation. [Wikipedia](https://en.wikipedia.org/wiki/Radix_sort)
// worst time complexity: O(n * k) where n is the number of elements in the input array and k is the number of digits in the largest number
// average time complexity: O(n * k) where n is the number of elements in the input array and k is the number of digits in the largest number
// space complexity: O(n)
package sort
import (
"github.com/TheAlgorithms/Go/constraints"
"github.com/TheAlgorithms/Go/math/max"
)
func countSort[T constraints.Integer](arr []T, exp T) []T {
var digits [10]int
var output = make([]T, len(arr))
for _, item := range arr {
digits[(item/exp)%10]++
}
for i := 1; i < 10; i++ {
digits[i] += digits[i-1]
}
for i := len(arr) - 1; i >= 0; i-- {
output[digits[(arr[i]/exp)%10]-1] = arr[i]
digits[(arr[i]/exp)%10]--
}
return output
}
func unsignedRadixSort[T constraints.Integer](arr []T) []T {
if len(arr) == 0 {
return arr
}
maxElement := max.Int(arr...)
for exp := T(1); maxElement/exp > 0; exp *= 10 {
arr = countSort(arr, exp)
}
return arr
}
func RadixSort[T constraints.Integer](arr []T) []T {
if len(arr) < 1 {
return arr
}
var negatives, nonNegatives []T
for _, item := range arr {
if item < 0 {
negatives = append(negatives, -item)
} else {
nonNegatives = append(nonNegatives, item)
}
}
negatives = unsignedRadixSort(negatives)
// Reverse the negative array and restore signs
for i, j := 0, len(negatives)-1; i <= j; i, j = i+1, j-1 {
negatives[i], negatives[j] = -negatives[j], -negatives[i]
}
return append(negatives, unsignedRadixSort(nonNegatives)...)
}