-
-
Notifications
You must be signed in to change notification settings - Fork 2.6k
/
matrixmultiplication.go
56 lines (48 loc) · 1.21 KB
/
matrixmultiplication.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
// matrix chain multiplication problem
// https://en.wikipedia.org/wiki/Matrix_chain_multiplication
// www.geeksforgeeks.org/dynamic_programming-set-8-matrix-chain-multiplication/
// time complexity: O(n^3)
// space complexity: O(n^2)
package dynamic
import "github.com/TheAlgorithms/Go/math/min"
// MatrixChainRec function
func MatrixChainRec(D []int, i, j int) int {
// d[i-1] x d[i] : dimension of matrix i
if i == j {
return 0
}
q := 1 << 32
for k := i; k < j; k++ {
prod := MatrixChainRec(D, i, k) + MatrixChainRec(D, k+1, j) + D[i-1]*D[k]*D[j]
q = min.Int(prod, q)
}
return q
}
// MatrixChainDp function
func MatrixChainDp(D []int) int {
// d[i-1] x d[i] : dimension of matrix i
N := len(D)
dp := make([][]int, N) // dp[i][j] = matrixChainRec(D, i, j)
for i := 0; i < N; i++ {
dp[i] = make([]int, N)
dp[i][i] = 0
}
for l := 2; l < N; l++ {
for i := 1; i < N-l+1; i++ {
j := i + l - 1
dp[i][j] = 1 << 31
for k := i; k < j; k++ {
prod := dp[i][k] + dp[k+1][j] + D[i-1]*D[k]*D[j]
dp[i][j] = min.Int(prod, dp[i][j])
}
}
}
return dp[1][N-1]
}
/*
func main() {
D := []int{2, 2, 2, 2, 2} // 4 matrices
fmt.Print(matrixChainRec(D, 1, 4), "\n")
fmt.Print(matrixChainDp(D), "\n")
}
*/