-
Notifications
You must be signed in to change notification settings - Fork 1
/
app.py
72 lines (61 loc) · 1.85 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
from flask import Flask, request, jsonify
from flask.logging import create_logger
import logging
import pandas as pd
from sklearn.externals import joblib
from sklearn.preprocessing import StandardScaler
app = Flask(__name__)
LOG = create_logger(app)
LOG.setLevel(logging.INFO)
def scale(payload):
"""Scales Payload"""
LOG.info(f"Scaling Payload: \n{payload}")
scaler = StandardScaler().fit(payload.astype(float))
scaled_adhoc_predict = scaler.transform(payload.astype(float))
return scaled_adhoc_predict
@app.route("/")
def home():
html = f"<h3>Sklearn Prediction Home</h3>"
return html.format(format)
@app.route("/predict", methods=['POST'])
def predict():
"""Performs an sklearn prediction
input looks like:
{
"CHAS":{
"0":0
},
"RM":{
"0":6.575
},
"TAX":{
"0":296.0
},
"PTRATIO":{
"0":15.3
},
"B":{
"0":396.9
},
"LSTAT":{
"0":4.98
}
result looks like:
{ "prediction": [ <val> ] }
"""
# Logging the input payload
json_payload = request.json
LOG.info(f"JSON payload: \n{json_payload}")
inference_payload = pd.DataFrame(json_payload)
LOG.info(f"Inference payload DataFrame: \n{inference_payload}")
# scale the input
scaled_payload = scale(inference_payload)
# get an output prediction from the pretrained model, clf
prediction = list(clf.predict(scaled_payload))
# TO DO: Log the output prediction value
LOG.info(f"prediction: {prediction}")
return jsonify({'prediction': prediction})
if __name__ == "__main__":
# load pretrained model as clf
clf = joblib.load("./model_data/boston_housing_prediction.joblib")
app.run(host='0.0.0.0', port=80, debug=True) # specify port=80