-
Notifications
You must be signed in to change notification settings - Fork 8
/
chatbotCore.py
53 lines (46 loc) · 1.92 KB
/
chatbotCore.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import os
import sys
import openai
from googletrans import Translator
from langchain.chains import ConversationalRetrievalChain
from langchain.chat_models import ChatOpenAI
from langchain.document_loaders import DirectoryLoader, TextLoader
from langchain.embeddings import OpenAIEmbeddings
from langchain.indexes import VectorstoreIndexCreator
from langchain.indexes.vectorstore import VectorStoreIndexWrapper
from langchain.vectorstores import Chroma
import constants
os.environ["OPENAI_API_KEY"] = constants.APIKEY
PERSIST = False
global query
query = None
if len(sys.argv) > 1:
query = sys.argv[1]
if PERSIST and os.path.exists("persist"):
print("Reusing index...\n")
vectorstore = Chroma(persist_directory="persist", embedding_function=OpenAIEmbeddings())
index = VectorStoreIndexWrapper(vectorstore=vectorstore)
else:
loader = TextLoader("data/data.txt") # Use this line if you only need data.txt
# loader = DirectoryLoader("data/")
if PERSIST:
index = VectorstoreIndexCreator(vectorstore_kwargs={"persist_directory": "persist"}).from_loaders([loader])
else:
index = VectorstoreIndexCreator().from_loaders([loader])
chain = ConversationalRetrievalChain.from_llm(
llm=ChatOpenAI(model="gpt-3.5-turbo"),
retriever=index.vectorstore.as_retriever(search_kwargs={"k": 1}),
)
chat_history = []
def run_chatbot(query):
result = chain({"question": query, "chat_history": chat_history})
chat_history.append((query, result['answer']))
return result['answer']
if __name__ == "__main__":
print("Input Some text : ")
text = input() # Optional, remove if you are taking input from frontend
translator = Translator()
detectedLang = translator.detect(text).lang
translated = translator.translate(text, dest='en')
outputText = run_chatbot(translated.text)
print(translator.translate(outputText, dest=detectedLang).text)