-
Notifications
You must be signed in to change notification settings - Fork 0
/
week 5 in c
160 lines (133 loc) · 3.24 KB
/
week 5 in c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
<1> Conditional Statements in C
Task
Given a positive integer denoting , do the following:
If , print the lowercase English word corresponding to the number (e.g., one for , two for , etc.).
If , print Greater than 9.
Input Format
The first line contains a single integer, .
Output Format
If , then print the lowercase English word corresponding to the number (e.g., one for , two for , etc.); otherwise, print Greater than 9 instead.
Sample Input
5
Sample Output
five
Sample Input #01
8
Sample Output #01
eight
Sample Input #02
44
Sample Output #02
Greater than 9
#include <assert.h>
#include <limits.h>
#include <math.h>
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
char* readline();
int main()
{
char* n_endptr;
char* n_str = readline();
int n = strtol(n_str, &n_endptr, 10);
if (n_endptr == n_str || *n_endptr != '\0') { exit(EXIT_FAILURE); }
// Write Your Code Here
if(n>=1 && n<=9)
{ if(n==1)
printf("one");
if(n==2)
printf("two");
if(n==3)
printf("three");
if(n==4)
printf("four");
if(n==5)
printf("five");
if(n==6)
printf("six");
if(n==7)
printf("seven");
if(n==8)
printf("eight");
if(n==9)
printf("nine");
}
else
printf("Greater than 9");
return 0;
}
char* readline() {
size_t alloc_length = 1024;
size_t data_length = 0;
char* data = malloc(alloc_length);
while (true) {
char* cursor = data + data_length;
char* line = fgets(cursor, alloc_length - data_length, stdin);
if (!line) { break; }
data_length += strlen(cursor);
if (data_length < alloc_length - 1 || data[data_length - 1] == '\n') { break; }
size_t new_length = alloc_length << 1;
data = realloc(data, new_length);
if (!data) { break; }
alloc_length = new_length;
}
if (data[data_length - 1] == '\n') {
data[data_length - 1] = '\0';
}
data = realloc(data, data_length);
return data;
}
<2> Palindromic Prime Number 1
In number theory, a palindromic prime number is a positive integer where the number is both palindrome number as well as prime number. You are given an integer n. Print "YES" (without quotes) if the given number is palindromic prime number, print "NO" (without quotes) otherwise.
Input Format
The only line of input contains an integer n.
Constraints
1 <= n <= 10000
Output Format
Print "YES" (without quotes) if the given number is palindromic prime number, print "NO" (without quotes) otherwise.
Sample Input 0
121
Sample Output 0
NO
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
int is_prime(int n){
int i;
for (i = 2; i < n/2+1; i++) {
if (n%i == 0){
return 0;
}
}
return 1;
}
int is_palindrome(int n)
{
char s[10];
sprintf(s, "%d", n);
int i, last;
last = strlen(s);
for(i = 0; i < last; i++)
{
if(s[i] != s[last - i - 1])
{
return 0;
}
}
return 1;
}
int main(int argc, char *argv[])
{
int i;
for (i = 999; i >= 2; i--) {
if(is_prime(i) && is_palindrome(i)){
printf("%d\n", i);
break;
}
}
return 0;
}