Privacy-aware Query Processing Over Federations of RDF Datasets
BOUNCER runs on Debian GNU/Linux and OS X and Python 3.x
-
Download BOUNCER Clone using git:
$ git clone https://github.com/SDM-TIB/BOUNCER.git
-
Go to BOUNCER folder:
$ cd BOUNCER
-
Run:
pip install -r requirements.txt
-
Install BOUNCER:
python setup.py install
-
Create endpoints list
endpoints.txt
Example:
http://biotea.linkeddata.es/sparql
http://colil.dbcls.jp/sparql
-
Run RDF molecule template extractor in
scripts
folder:scripts$ python3.5 create_rdfmts.py -s endpoints.txt -o 'templates/mytemplates.json'
-
Create configuration file,
config.json
inconfig
folder:Example:
{
"MoleculeTemplates": [
{
"type": "filepath",
"path":"templates/mytemplates.json"
}
]
}
- Now BOUNCER is ready to "investigate" :)
BOUNCER currently supports endpoints that answer queries either on JSON. Expect hard failures if you intend to use BOUNCER on endpoints that answer in any other format.
Once you installed BOUNCER and the Molecule Templates are ready with config.json, you can start running BOUNCER using the following script:
$ python3.5 test_bouncer.py -p <planonly> -q <query> -c <path/to/config.json> -s <isstring>
where:
<query>
: - SPARQL QUERY<path/to/config.json>
: - path to configuration file<isstring>
: - (Optional) set if is sent as string: available values 1 or -1. -1 is default, meaning query is from file<planonly>
: - (Optional) if set True, then only execution plan is generated and showed. If False (default), then the generated plan will be executed, too.
$./runQueries.sh <path/to/queries-dir> <path/to/config.json> <path/to/results-folder> errors.txt <planonlyTorF> &
OR
$ python3.5 start_experiment.py -c <path/to/config.json> -q <query-file> -r <path/to/results-folder> -t 'MULDER' -s True -p <planonly>
Endris, Kemele & Almhithawi, Zuhair & Lytra, Ioanna & Vidal, Maria-Esther & Auer, Sören. "BOUNCER: Privacy-aware Query Processing Over Federations of RDF Datasets", (To appear)In International Conference on Database and Expert Systems Applications, DEXA 2018.