Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Rubi can't integrate this, but Mathematica can #54

Open
darthvlado opened this issue Jun 21, 2024 · 1 comment
Open

Rubi can't integrate this, but Mathematica can #54

darthvlado opened this issue Jun 21, 2024 · 1 comment

Comments

@darthvlado
Copy link

In[1]:= $Assumptions={0<v<1};
In[2]:= Integrate[1/(2Pi) Sin[\[Theta]]/2 (v^2 (Sin[\[Theta]]Cos[\[Phi]])^2)/Sqrt[1-v^2 (Sin[\[Theta]]Cos[\[Phi]])^2],{\[Phi],0,2\[Pi]},{\[Theta],0,\[Pi]}]
Out[2]= (-v Sqrt[1-v^2]+ArcSin[v])/(2 v)
In[3]:= <<Rubi`
In[17]:= Int[Sin[\[Theta]]/2 (v^2 (Sin[\[Theta]]Cos[\[Phi]])^2)/Sqrt[1-v^2 (Sin[\[Theta]]Cos[\[Phi]])^2],{\[Theta],0,\[Pi]}]
Int[1/(2Pi) %,{\[Phi],0,2\[Pi]}]
Out[17]= -(1/2)+1/2 ArcTanh[v Cos[\[Phi]]] (v Cos[\[Phi]]+Sec[\[Phi]]/v)
Out[18]= -Underscript[\[Limit], \[Phi]->0]((Sqrt[1-v^2] ArcTan[Sqrt[1-v^2] Cot[\[Phi]]])/(4 \[Pi])+(v ArcTanh[v Cos[\[Phi]]] Sin[\[Phi]])/(4 \[Pi])+Int[ArcTanh[v Cos[\[Phi]]] Sec[\[Phi]],\[Phi]]/(4 \[Pi] v))+Underscript[\[Limit], \[Phi]->2 \[Pi]]((Sqrt[1-v^2] ArcTan[Sqrt[1-v^2] Cot[\[Phi]]])/(4 \[Pi])+(v ArcTanh[v Cos[\[Phi]]] Sin[\[Phi]])/(4 \[Pi])+Int[ArcTanh[v Cos[\[Phi]]] Sec[\[Phi]],\[Phi]]/(4 \[Pi] v))
@stblake
Copy link
Collaborator

stblake commented Jun 25, 2024

Rubi really shouldn't be used for definite integration. I would be in favour of removing the definite integration feature/rule in Rubi.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Development

No branches or pull requests

2 participants