-
Notifications
You must be signed in to change notification settings - Fork 5
/
Ireland_Rosen_Chapters_9.tex
1859 lines (1336 loc) · 91 KB
/
Ireland_Rosen_Chapters_9.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
%&LaTeX
\documentclass[11pt,a4paper]{article}
\usepackage[frenchb,english]{babel}
\usepackage[applemac]{inputenc}
\usepackage[OT1]{fontenc}
\usepackage[]{graphicx}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amsthm}
\usepackage{amssymb}
\usepackage{yfonts}
%\input{8bitdefs}
% marges
\topmargin 10pt
\headsep 10pt
\headheight 10pt
\marginparwidth 30pt
\oddsidemargin 40pt
\evensidemargin 40pt
\footskip 30pt
\textheight 670pt
\textwidth 420pt
\def\imp{\Rightarrow}
\def\gcro{\mbox{[\hspace{-.15em}[}}% intervalles d'entiers
\def\dcro{\mbox{]\hspace{-.15em}]}}
\newcommand{\D}{\mathrm{d}}
\newcommand{\Q}{\mathbb{Q}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\N}{\mathbb{N}}
\newcommand{\R}{\mathbb{R}}
\newcommand{\C}{\mathbb{C}}
\newcommand{\F}{\mathbb{F}}
\newcommand{\re}{\,\mathrm{Re}\,}
\newcommand{\ord}{\mathrm{ord}}
\newcommand{\n}{\mathrm{N}}
\newcommand{\legendre}[2]{\genfrac{(}{)}{}{}{#1}{#2}}
\title{Solutions to Ireland, Rosen ``A Classical Introduction to Modern Number Theory''}
\author{Richard Ganaye}
\begin{document}
\maketitle
{ \Large \bf Chapter 9}
\paragraph{Ex. 9.1}
{\it If $\alpha \in \Z[\omega]$, show that $\alpha$ is congruent to either $0,1$, or $-1$ modulo $1-\omega$.
}
\begin{proof}
Let $\lambda = 1 - \omega$, and $\alpha = a+b\omega \in D = \Z[\omega], a,b \in \Z$.
$\omega \equiv 1 \pmod \lambda$, so $\alpha \equiv a+b \pmod \lambda$, $\alpha \equiv c$ with $c = a+b \in \Z$.
$c\equiv 0,1,-1 \pmod 3$, and since $\lambda \mid 3$, $c \equiv 0,1,-1 \pmod \lambda$.
Every $\alpha \in D$ is congruent to either $0,1$, or $-1$ modulo $\lambda = 1 -\omega$.
The classes of $0,1,-1$ in $D/\lambda D$ are distinct. Indeed, $1\not \equiv -1 \pmod \lambda$, if not $\lambda \mid 2$, so $2 = \lambda \lambda'$, $N(2) = N(\lambda) N(\lambda')$, thus $4 = 3 N(\lambda')$, so $3 \mid 4$, which is nonsense.
$\pm1 \equiv 0 \pmod \lambda$ implies $\lambda \mid 1$, so $\lambda$ would be a unit, in contradiction with $\lambda$ prime.
So there exist exactly three classes modulo $\lambda$ in $D$ : $ | D/\lambda D | = 3 = N(\lambda)$.
\end{proof}
\paragraph{Ex. 9.2}
{\it From now on we shall set $D = \Z[\omega]$ and $\lambda = 1 - \omega$. For $\mu$ in $D$ show that we can write $\mu = (-1)^a \omega^b \lambda^c\pi_1^{a_1}\pi_2^{a_2}\cdots\pi_t^{a_t}$, where $a,b,c$, and the $a_i$ are nonnegative integers and the $\pi_i$ are primary primes.
}
\begin{proof}
Let $S$ the set containing $\lambda = 1 - \omega$ and all primary primes.
We show that
\begin{enumerate}
\item[(a)] every prime in $D$ is associate to a prime in $S$,
\item[(b)] no two primes in $S$ are associate.
\end{enumerate}
Let $\pi$ be a prime in $D$. There are three cases.
\begin{enumerate}
\item[$\bullet$] If $\n(\pi) = 3$, then $\pi$ is associate to $\lambda \in S$, thus $\pi \in \{1-\omega, -1+\omega, -2 - \omega, 2 + \omega, 1 + 2\omega, -1-2\omega\}$, and no associate of $\lambda$ is primary.
\item[$\bullet$] If $\n(\pi) = q^2$, where $q \equiv -1 \pmod 3, q>0,$ is a rational prime, then $\pi$ is associate to $q$ (Proposition 9.1.2), and $q$ is a primary prime.
The primes associate to $q$ are $q, -q, \omega q, -\omega q, -q - \omega q, q + \omega q$, so only $q$ is primary.
\item[$\bullet$] If $\n(\pi) = p$, where $p \equiv 1 \pmod 3$, then the proposition 9.1.4. shows that among the associates to $\pi$ exactly one is primary.
\end{enumerate}
Moreover, the norm of two primes belonging to two different cases are distinct, so two such primes are not associate.
By Theorem 3, Chapter 1, as $D = \Z[\omega]$ is a principal ideal domain, every $\mu \in D$ is of the form
$$\mu = u \prod_{\pi \in S} \pi^{e(\pi)},$$
where $u$ is a unit, so $u = (-1)^a\omega^b$. Thus
$$\mu = (-1)^a \omega^b \lambda^c\pi_1^{a_1}\pi_2^{a_2}\cdots\pi_t^{a_t},$$ where the $\pi$ are primary primes, and $a,b,c$ and the $a_i$ are nonnegative integers.
\end{proof}
\paragraph{Ex. 9.3}
{\it Let $\gamma$ a primary prime. To evaluate $\chi_\gamma(\mu)$ we see, by Exercise 2, that it is enough to evaluate $\chi_\gamma(-1), \chi_\gamma(\omega), \chi_\gamma(\lambda)$, and $\chi_\gamma(\pi)$, where $\pi$ is a primary prime. Since $-1 =(-1)^3$ we have $\chi_\gamma(-1) = 1$. We now consider $\chi_\gamma(\omega)$. Let $\gamma = a+b \omega$ and set $a = 3m -1$ and $b=3n$. Show that $\chi_\gamma(\omega) = \omega^{m+n}$.
}
\begin{proof}
Let $\gamma = a+b\omega=3m-1+3n\omega$. Then $\chi_{\gamma}(\omega) = \omega^{\frac{N(\gamma)-1}{3}}$ (remark (b) of Theorem 1).
\begin{align*}
N(\gamma)-1 &= (3m-1)^2+(3n)^2-3n(3m-1)-1\\
&=9m^2 - 6m + 9n^2 -9nm + 3n\\
\frac{N(\gamma)-1}{3}&= 3m^2-2m+3n^2-3nm+n \equiv n+m \ [3]
\end{align*}
Thus, for $\gamma = a+b\omega=3m-1+3n\omega$,
$$\chi_{\gamma}(\omega) = \omega^{\frac{N(\gamma)-1}{3}} = \omega^{n+m}.$$
\end{proof}
\paragraph{Ex. 9.4}
{\it (continuation) Show that $\chi_\gamma(\omega) = 1,\omega$, or $\omega^2$ according to whether $\gamma$ is congruent to 8,2, or 5 modulo $3\lambda$. In particular, if $q$ is a rational prime, $q \equiv 2 \pmod 3$, then $\chi_q(\omega) = 1, \omega$, or $\omega^2$ according to whether $q \equiv 8,2$, or $5\pmod 9$. [Hint : $\gamma = a + b \omega = -1 + 3(m+n\omega)$, and so $\gamma \equiv -1 + 3(m+n) \pmod{3\lambda}$.]
}
\begin{proof}
$\lambda=1-\omega$, so $\omega\equiv1\ \pmod \lambda$. Thus
\begin{align*}
m+n\omega &\equiv m+n\ \pmod \lambda\\
3(m+n \omega) &\equiv 3 (m+n) \pmod{3\lambda}\\
\gamma = -1 + 3(m+n\omega) &\equiv -1+3(m+n) \pmod{3 \lambda}
\end{align*}
Moreover $9 = 3 \lambda \bar{\lambda} \equiv 0 \pmod{3 \lambda}$, thus $\gamma$ is congruent modulo $3\lambda$ to an integer between $0$ and $8$ of the form $3k-1$ : $\gamma \equiv 8,2$ or $5 \pmod{3\lambda}$.
By Ex. 9.3, $\chi_\gamma(\omega) = 1 \iff m+n \equiv 0 \ [3]$, and $m+n \equiv 0 \ [3]$ implies $m+n = 3k, k \in \Z$, so $\gamma \equiv -1+ 9k \equiv -1 \equiv 8 \ [3\lambda]$.
Conversely, if $\gamma \equiv 8 \equiv -1 \ [3\lambda]$, then $3\lambda \mid 3(m+n)$, so $\lambda \mid m+n$, and $\n(\lambda) \mid\n(m+n)$, $3 \mid (m+n)^2$, thus $3 \mid m+n$, $m+n \equiv 0 \ [3]$, and so $\chi_\gamma(\omega) = 1$. The two other cases are similar, so we obtain
\begin{align*}
\chi_\gamma(\omega) = 1 &\iff m+n \equiv 0\ [3] \iff \gamma \equiv 8 \ [3\lambda],\\
\chi_\gamma(\omega) = \omega &\iff m+n \equiv 1\ [3] \iff \gamma \equiv 2 \ [3\lambda],\\
\chi_\gamma(\omega) = \omega^2 &\iff m+n \equiv 2\ [3] \iff \gamma \equiv 5 \ [3\lambda].
\end{align*}
If $\gamma = q$ is a rational prime,
$q \equiv 8 \ [9]$ implies $q \equiv 8\ [3\lambda]$, since $3 \lambda \mid 9 = 3 \lambda \bar{\lambda}$, thus $\chi_q(\omega) = 1$.
Conversely, if $\chi_q(\omega) = 1$, then $q \equiv 8\ [3\lambda]$, $q-8 = \mu (3 \lambda), \mu \in D$, therefore
$(q-8)^2 = N(\mu) 3^3, 3^3 \mid (q-8)^2$, thus $3^2 \mid q-8$ and so $q \equiv 8 \ [9]$. The two other cases are similar.
\begin{align*}
\chi_q(\omega) = 1 & \iff q \equiv 8 \ [9],\\
\chi_q(\omega) = \omega & \iff q \equiv 2 \ [9],\\
\chi_q(\omega) = \omega^2 &\iff q \equiv 5 \ [9].
\end{align*}
\end{proof}
\paragraph{Ex. 9.5}
{\it In the text we stated Eisenstein's result $\chi_\gamma(\lambda) = \omega^{2m}$. Show that $\chi_{\gamma}(3) = \omega^{2n}$.
}
\begin{proof} Here $\gamma = (3m-1) + 3n\omega$.
Note that $(1-\omega)^2 = -3 \omega$, thus $\chi_\gamma((1-\omega)^2) = \chi_\gamma(-1)\chi_\gamma(3)\chi_\gamma(\omega)$.
Using Eisenstein's result (see a proof in Ex.24-26),
$$\chi_\gamma((1-\omega)^2)= \chi_\gamma(\lambda^2) =\chi_\gamma(\lambda)^2 =\omega^{4m} = \omega^m.$$
As $-1 = (-1)^3, \chi_\gamma(-1) = 1$. Finally $\chi_\gamma(\omega) = \omega^{m+n}$ by Exercise 9.3. Thus
$$\omega^m = \chi_\gamma(3) \omega^{m+n},\qquad \chi_\gamma(3) = \omega^{-n} = \omega^{2n}.$$
In conclusion,
$$\chi_\gamma(3) = \omega^{2n}.$$
\end{proof}
\paragraph{Ex. 9.6}
{\it Prove that
\begin{enumerate}
\item[(a)] $\chi_\gamma(\lambda) = 1$ for $\gamma \equiv 8, 8 + 3\omega, 8 + 6 \omega \ [9]$.
\item[(b)] $\chi_\gamma(\lambda) = \omega$ for $\gamma \equiv 5, 5 + 3\omega, 5 + 6 \omega \ [9]$.
\item[(c)]$\chi_\gamma(\lambda) = \omega^2$ for $\gamma \equiv 2, 2 + 3\omega, 2 + 6 \omega \ [9]$.
\end{enumerate}
}
\begin{proof}
Here $\gamma = -1 + 3(m+n\omega)$ is a primary prime, and $\chi_\gamma(\lambda) = \omega^{2m}$.
\begin{align*}
\chi_\gamma(\lambda)=1 &\iff m\equiv0\ [3] \Rightarrow \gamma \equiv 8+3n\omega\ [9]\Rightarrow \gamma\equiv8,8+3\omega,8+6\omega\ [9]\\
\chi_\gamma(\lambda)=\omega&\iff m\equiv2\ [3] \Rightarrow \gamma \equiv5+3n\omega\ [9]\Rightarrow \gamma\equiv5,5+3\omega,5+6\omega\ [9]\\
\chi_\gamma(\lambda)=\omega^2& \iff m\equiv1\ [3] \Rightarrow \gamma \equiv2+3n\omega\ [9]\Rightarrow \gamma\equiv2,2+3\omega,2+6\omega\ [9]\\
\end{align*}
As $\chi_\gamma(\lambda) \in \{1,\omega,\omega^2\}$, these 9 cases are the only possibilities. Moreover these 9 cases are mutually exclusive, since $9$ doesn't divide any difference. Thus the reciprocals are true.
\begin{align*}
\chi_\gamma(\lambda)=1 &\iff \gamma\equiv8,8+3\omega,8+6\omega\ [9]\\
\chi_\gamma(\lambda)=\omega&\iff \gamma\equiv5,5+3\omega,5+6\omega\ [9]\\
\chi_\gamma(\lambda)=\omega^2&\iff \gamma\equiv2,2+3\omega,2+6\omega\ [9]\\
\end{align*}
\end{proof}
\paragraph{Ex. 9.7}
{\it Find primary primes associate to $1-2\omega, -7-3\omega$, and $3-\omega$.
}
\begin{proof}
: \\
\begin{enumerate}
\item[$\bullet$] $(1-2\omega)\omega = 2 + 3 \omega \equiv 2 \pmod 3$, so $2+3\omega$ is primary, and associate to $1-2\omega$.
$\n(2+3\omega) = 7$ and 7 is a rational prime, thus $2 + 3\omega$ is a primary prime.
\item[$\bullet$] $-7 - 3 \omega \equiv 2 \pmod 3$.
$\n(-7-3\omega) = 37$ and 37 is a rational prime, thus $-7 - 3\omega$ is a primary prime.
\item[$\bullet$] $(3-\omega)\omega^2 = -4 - 3\omega \equiv 2 \pmod 3$, so $-4-3\omega$ is primary, and associate to $3-\omega$.
$\n(-4 - 3 \omega) = 13$ and 13 is a rational prime, thus $-4 - 3 \omega$ is a primary prime.
\end{enumerate}
\end{proof}
\paragraph{Ex. 9.8}
{\it Factor the following numbers into primes in $D$ : $7,21,45,22$, and $143$.
}
\begin{proof}
$7=\n(2+3\omega)$, thus $ 7 = (2+3\omega)(2+3\omega^2) = (2+3\omega)(-1-3\omega)$, where $2 + 3\omega$ and $-1-3\omega$ are primes in $D$, since their norm is a prime integer. Since these primes are primary, they are not associate.
$21 = 3\times 7 = -\omega^2 \lambda^2 (2+3\omega)(-1-3\omega)$ since $3=-\omega^2(1-\omega)^2$.
$45 = 3^2\times 5 = \omega \lambda^4 5$, where $5 \equiv 2 \pmod 3$ is a primary prime in $D$.
$22=2\times 11$ , where 2 and 11 are primes in $D$.
$143 = 11\times 13 = 11(-4-3\omega)(-4-3\omega^2) = 11 (-4-3\omega)(-1+3\omega)$.
\end{proof}
\paragraph{Ex. 9.9}
{\it Show that $\overline{\alpha} \ne 0$, the residue class of $\alpha$, is a cube in the field $D/\pi D$ iff $\alpha^{(N\pi -1)/3} \equiv 1 \pmod \pi$. Conclude that there are $(N\pi - 1)/3$ cubes in $(D/\pi D)^*$.
}
\bigskip
Solution 1:
\begin{proof}
Let $\pi$ be a prime in $D$, $N\pi \ne 3$, and $\alpha \in D,\pi \nmid \alpha$.
$\overline{\alpha}$ is a cube in $(D/\pi D)^*$
$\iff x^3 \equiv \alpha \pmod \pi$ has a solution in $D$
$\iff \chi_{\pi}(\alpha)= 1$ \qquad \qquad (by Prop. 9.3.3(a))
$\iff \alpha^{\frac{N\pi-1}{3}} \equiv 1 \pmod \pi$
$\iff \overline{\alpha}^{\frac{N\pi-1}{3}} = \overline{1}$.
The cubes in $(D/\pi D)^*$ are then the roots of the polynomial $f(x) = x^{\frac{N\pi-1}{3}} - \overline{1}$ in $D/\pi D$.
Let $q$ be the cardinal of the field $D/\pi D$. Since $q = |D/\pi D| = N\pi$, $\frac{N\pi - 1}{3} \mid q-1$, $f(x) \mid x^{q-1}-1 \mid x^q-x$. By Corollary 2 of Proposition 7.1.1, $f$ has $\deg(f) = \frac{N\pi-1}{3}$ roots.
Conclusion: there are exactly $\frac{N\pi-1}{3}$ cubes in $(D/\pi D)^*$.
\end{proof}
Solution 2:
\begin{proof}
Let $\varphi : (D/\pi D)^* \to (D/\pi D)^*$ be the group homomorphism defined by $\varphi(x) = x^3$.
Then $\mathrm{im}(\varphi)$ is the set of cubes in $(D/\pi D)^*$.
The equation $x^3 = \overline{1}$ has three distinct solutions $\overline{1}, \overline{\omega}, \overline{\omega}^2$ in $D/ \pi D$ if $N\pi \ne 3$ (see the demonstration of Proposition 9.3.1).
Thus $\ker(\varphi)= \{\overline{1}, \overline{\omega}, \overline{\omega}^2\}$ and $| \ker(\varphi)| = 3$. Therefore $| \mathrm{im} (\varphi) | = | (D/\pi D)^* | / |\ker(\varphi) | = (N\pi - 1)/3$. There exist exactly $\frac{N\pi-1}{3}$ cubes in $(D/\pi D)^*$.
\end{proof}
Note: if $N\pi = 3$, that is to say, if $\pi$ is associate to $1-\omega$, $D/\pi D = \{\overline{0},\overline{1}, \overline{2}\}$. As $\overline{1}^3 = \overline{1}, \overline{2}^3 = \overline{2}$, all the elements of $(D/\pi D)^*$ are cubes.
\paragraph{Ex. 9.10}
{\it What is the factorisation of $x^{24}-1$ in $D/5D$.
}
\begin{proof}
$\vert (D/5D)^*\vert = N(5) - 1 = 24$, thus $x^{24} - 1 = \prod\limits_{\alpha \in (D/ 5 D)^*} (x - \alpha)$.
(where the $\alpha \in (D/ 5 D)^*$ are of the form $\alpha = a + b\, [\omega],\ 0 \leq a <5, 0 \leq b <5, (a,b) \ne (0,0))$.
\end{proof}
\paragraph{Ex. 9.11}
{\it How many cubes are there in $D/5D$ ?
}
\begin{proof}
By Exercise 9.9, there exist $(N(5) - 1)/3 = 8$ cubes in $(D/5D)^*$ (and $0 = 0^3$ is a cube).
\end{proof}
\paragraph{Ex. 9.12}
{\it Show that $\omega \lambda$ has order 8 in $D/5D$ and that $\omega^2 \lambda$ has order 24. [Hint : Show first that $(\omega \lambda)^2$ has order 4.]
}
\begin{proof} If $\alpha = (\omega \lambda)^2$, then
$$\alpha = (\omega \lambda)^2 = \omega^2 (1-\omega)^2 = \omega^2(1 + \omega^2-2 \omega) = -3\omega^3= -3.$$
So $\alpha^2 =9 \equiv -1\pmod 5, \alpha^4 \equiv 1 \pmod 5$ and $\alpha^2 \not \equiv 1 \pmod 5$, thus the class of $\alpha= (\omega \lambda)^2$ has order 4 in $(D/5D)^*$, and this implies that $\omega \lambda$ has order 8.
Let $\beta = \omega^2 \lambda$. $\vert (D/5 D)^* \vert = 24$, thus $[\beta]^{24} = 1$ (where $[\beta]$ is the class of $\beta$ in $D/5D$.)
To verify that $[\beta]$ has order 24, it is sufficient to show that $[\beta]^{8}\neq 1,[\beta]^{12}\neq 1$.
$\beta^8 = \omega ^{16} \lambda^8 = \omega \lambda^8 = (\omega \lambda)^8 \omega^2 \equiv \omega^2 \not \equiv 1 \pmod 5$.
$\beta^{12} = (\omega^2 \lambda)^{12} = \lambda^{12} = (\omega \lambda)^{12} \equiv (\omega \lambda)^{4} \equiv -1 \pmod 5$ (since $(\omega \lambda)$ has order 8 in $D/5D$).
Conclusion: $\omega \lambda$ has order 8, $\omega \lambda^2$ has order 24 in $(D/5D)^*$.
\end{proof}
\paragraph{Ex. 9.13}
{\it Show that $\pi$ is a cube in $D/5D$ iff $\pi \equiv 1,2,3,4,1+2\omega, 2 + 4\omega, 3 + \omega$, or $4+3\omega \pmod 5$.
}
\begin{proof}
Let $\pi \in D, [\pi] \neq 0$. Then $[\pi] $ is a cube in $D/5D$ iff $[\pi]^{(q^2-1)/3} = 1$, with $q = 5$, namely $[\pi]^8 = 1$ (Prop. 7.1.2, where $3 \mid q^2-1 = 24 = |(D/5D)^*| $).
By Exercise 9.12, the class of $\gamma = \omega \lambda$ has order 8, thus the 8 elements $[\gamma]^k, 0 \leq k \leq 7$ are distinct roots of the polynomial $x^8-1$, which has at most 8 roots. Therefore the subgroup of cubes in $(D/5D)^*$ is
$$\{1 ,[\gamma], [\gamma]^2,\ldots, [\gamma]^7\}.$$
$\gamma=\omega(1-\omega) = \omega+1+\omega = 1 + 2\omega$, so
\begin{align*}
\gamma^0 &= 1\\
\gamma^1 & = 1 + 2\omega\\
\gamma^2 &\equiv -3 \equiv 2\ [5]\qquad (\mathrm{Ex}.\ 9.12)\\
\gamma^3 &= -3 - 6\omega \equiv 2 + 4 \omega \ [5]\\
\gamma^4&\equiv -1 \equiv 4\ [5]\\
\gamma^5 &\equiv -1 - 2 \omega \equiv 4 + 3\omega\ [5]\\
\gamma^6 &\equiv 3 \ [5]\\
\gamma^7 &\equiv 3+6\omega \equiv 3 + \omega \ [5]
\end{align*}
Conclusion: If $\pi \not \equiv 0 \pmod 5$, $\pi \equiv \alpha^3 \pmod 5,\alpha \in D$ iff
$$\pi \equiv 1,2,3,4,1+2\omega,2+4\omega,3+\omega,4+3\omega\ [5].$$
\end{proof}
\paragraph{Ex. 9.14}
{\it For which primes $\pi \in D$ is $x^3 \equiv 5 \pmod \pi$ solvable ?
}
\begin{proof}
If $\pi$ is associate to 5, then $5^3 \equiv 0 \equiv 5 \pmod \pi$, so $x^3 \equiv 5 \pmod \pi$ is solvable.
If $\pi$ is a primary prime not associate to 5, the Law of Cubic Reciprocity gives
\begin{align*}
5\equiv x^3 \ [\pi], x \in D &\iff \chi_\pi(5)=1\\
&\iff \chi_5(\pi)=1\\
&\iff \pi \ \mathrm{ is\ a\ cube\ in\ } D/5D\\
&\iff \pi \equiv1,2,3,4,1+2\omega,2+4\omega,3+\omega,4+3\omega \ [5]
\end{align*}
(see Ex. 9.13)
\bigskip
Conclusion: the equation $5\equiv x^3 \ [\pi], x \in D $ is solvable iff the primary prime associate to $\pi$ is congruent modulo 5 to $1,2,3,4,1+2\omega,2+4\omega,3+\omega,4+3\omega$ (or 0).
Examples:
$\bullet$ $q=23$ is a primary prime congruent to 3 modulo 5, thus the equation $x^3 \equiv 5\pmod{23}$ has a solution $x \in D$ ($x = 19)$.
$\bullet$ $-4 - 3 \omega$ is the primary prime associate to the prime $3- \omega$, and $-4 - 3 \omega \equiv 1 + 2 \omega \pmod 5$, thus the equation $x^3 \equiv 5 \pmod {3-\omega}$ has a solution $a + b \omega \in \Z[\omega]$.
Indeed, $7^3 \equiv 8^3 \equiv 11^3 \equiv 5 \pmod {13}$, and $3 - \omega \mid 13$, so $7^3 \equiv 8^3 \equiv 11^3 \equiv 5 \pmod{ 3 - \omega}$.
\end{proof}
\paragraph{Ex. 9.15}
{\it Suppose that $p \equiv 1 \pmod 3$ and that $p = \pi \overline{\pi}$, where $\pi$ is a primary prime in $D$. Show that $x^3 \equiv a \pmod p$ is solvable in $\Z$ iff $\chi_{\pi}(a) = 1$. We assume that $a \in \Z$.
}
\begin{proof}
Since $\pi \mid p$, if $ x^3 \equiv a \pmod p,\ x \in \Z$, then $ x^3 \equiv a \pmod \pi$, thus $\chi_{\pi}(a) = 1$.
Conversely, suppose that $\chi_{\pi}(a) = 1$. Then the equation $y^3 \equiv a \pmod \pi$ has a solution $y = u + v \omega, \ u,v \in \Z$. Moreover, the class of $y$ has a representative $x \in \Z$ modulo $\pi$ (see the proof of Proposition 9.2.1) :
$$y\equiv x \pmod \pi, x \in \Z.$$
So $x^3 \equiv a \pmod \pi$ has a solution $x \in \Z$.
Thus $\pi \mid x^3 - a, N(\pi) = p \mid (x^3 -a)^2$, therefore $p \mid x^3 -a$ in $\Z$, and so $x^3 \equiv a \pmod p$.
Conclusion: if $p\equiv 1 \pmod 3$, $p = \pi \overline{\pi}$, where $\pi$ is a primary prime, and $a \in \Z$,
$$\exists x \in \Z, \ x^3 \equiv a \pmod p \iff \chi_{\pi}(a) = 1.$$
In other words, $x^3 \equiv a \pmod \pi$ is solvable in $D$ iff it is solvable in $\Z$.
\end{proof}
\paragraph{Ex. 9.16}
{\it Is $x^3 \equiv 2 - 3\omega \pmod {11}$ solvable ? Since $D/11D$ has 121 elements this is hard to resolve by straightforward checking. Fill in the details of the following proof that it is not solvable. $\chi_{\pi}(2 - 3 \omega) = \chi_{2-3\omega}(11)$ and so we shall have a solution iff $x^3 \equiv 11 \pmod {2-3\omega}$ is solvable. This congruence is solvable iff $x^3 = 11\pmod 7$ is solvable in $\Z$. However, $x^3 \equiv a \pmod 7$ is solvable in $\Z$ iff $a \equiv 1$ or $6 \pmod 7$.
}
\bigskip
Warning: false sentence, since
$$N(2 - 3 \omega) = (2-3\omega)(2 - 3 \omega^2) = 4 + 9 -6(\omega+\omega^2) = 4 + 9 + 6 = 19 \ (\mathrm{and}\ \mathrm{not}\ 7!).$$
\begin{proof}
Since $19$ is a rational prime, and since $\pi= 2 - 3\omega$ and $11$ are primary primes, by the Law of Cubic Reciprocity, and by Exercise 9.15 (with $p=19 \equiv 1 \pmod 3$),
\begin{align*}
\exists x \in D,\ 2-3\omega \equiv x^3\ [11]&\iff \chi_{11}(2-3\omega) = 1\\
&\iff \chi_{2-3\omega}(11)=1\\
&\iff \exists x \in D,\ x^3 \equiv 11\ [2 - 3 \omega]\\
&\iff \exists x \in \mathbb{Z},\ x^3 \equiv 11\ [19]
\end{align*}
Moreover, by Proposition 7.1.2 (with $p = 19$, $d = (p-1) \wedge 3 = 3, (p-1)/d = 6$),
$$\exists x \in \mathbb{Z},\ x^3 \equiv 11\ [19] \iff 11^6 \equiv 1 \pmod {19},$$
which is true : $11^6 = 121^3 = (19 \times 6 + 7)^3 \equiv 49 \times 7 \equiv 11 \times 7 \equiv 77 \equiv 1 \ [19]$.
Conclusion: there exists $x \in D$ such that $2-3\omega \equiv x^3 \pmod {11}$.
With some computer code, we find a solution $x = 1 + 8\omega$ (and its associates $\omega^2 x = 7 - \omega, \omega x = -8- 7\omega \equiv 3 + 4 \omega \pmod{11} $) :
$$x^3 = (1+8\omega)^3 = 321 - 168 \omega \equiv 2 - 3 \omega \pmod {11}.$$
\end{proof}
Note: The sentence becomes true if we replace $2 - 3\omega$ by the primary prime $2+3\omega$. Since $N(2+3\omega) = 7$, with the same reasoning,
\begin{align*}
\exists x \in D,\ 2+3\omega \equiv x^3\ [11]
&\iff \chi_{2+3\omega}(11)=1\\
&\iff \exists x \in D,\ x^3 \equiv 11\ [2 + 3 \omega]\\
&\iff \exists x \in \mathbb{Z},\ x^3 \equiv 11 \equiv 4\ [7]\\
&\iff 4^2 \equiv 1 \pmod 7
\end{align*}
but $4^2 \equiv 2 \not \equiv 1 \pmod 7$, so the equation $x^3 \equiv 2 + 3\omega \pmod {11}$ is not solvable.
($x^3 \equiv a \pmod {11}$ is solvable in $\Z$ iff $a^\frac{7-1}{3} = a^2 \equiv 1 \pmod 7$ iff $a \equiv \pm 1 \pmod 7$.)
\paragraph{Ex. 9.17}
{\it An element $\gamma \in D$ is called primary if $\gamma \equiv2 \pmod 3$. If $\gamma$ and $\rho$ are primary, show that $-\gamma \rho$ is primary. If $\gamma$ is primary, show that $\gamma = \pm \gamma_1\gamma_2\ldots \gamma_t$, where the $\gamma_i$ are (not necessarily distinct) primary primes.
}
\begin{proof}
If $\gamma \equiv 2, \rho \equiv 2 \pmod 3$, then $-\gamma \rho \equiv -2 \times 2 \equiv 2 \pmod 3$, so $-\gamma \rho$ is primary.
\bigskip
By Ex. 9.2, $\gamma$ can be written
$$\gamma = (-1)^a \omega^b \lambda^c \pi_1^{a_1}\cdots \pi_t^{a_t},$$
where $\pi_i \equiv 2 \pmod 3, a \in \{0,1\}, b \in \{0,1,2\}$.
As $\pi_i \equiv -1 \pmod 3$, and $\gamma \equiv -1 \pmod 3$, we obtain $\omega^b \lambda^c \equiv \pm 1 \pmod 3$. We prove that $b = c = 0$.
Note that $\lambda^2 = (1-\omega)^2 = -3\omega \equiv 0 \pmod 3$. If $c \geq 2$, we would obtain $\gamma \equiv 0 \pmod 3$, in contradiction with the hypothesis, thus $c = 0$ or $c = 1$.
If $c=1$, $$\omega^b\lambda^c \in \{1-\omega, \omega(1-\omega),\omega^2(1-\omega)\} = \{1 - \omega, 1+2\omega, - 2 - \omega\}.$$ Since $1-\omega \not \equiv \pm 1, 1+2\omega \not \equiv \pm 1, - 2 - \omega \not \equiv \pm 1 \pmod 3$, this is impossible, so $c=0$.
Then $\omega^b \equiv \pm 1 \pmod 3$, where $\omega^b \in \{1,\omega, -1-\omega\}$. Since $\omega \not \equiv \pm1 \pmod 3$, and $-1 - \omega \not \equiv \pm 1 \pmod 3$, then $\omega^b = 1, 0 \leq b \leq 2$, thus $b=0$.
Finally, $\gamma = (-1)^a \pi_1^{a_1}\cdots \pi_t^{a_t}$.
Conclusion: Every primary $\gamma \in D$ is under the form
$$\gamma = \pm \gamma_1\gamma_2\cdots \gamma_t,$$
where the $\gamma_i$ are primary primes.
\end{proof}
\paragraph{Ex. 9.18}
{\it (continuation) If $\gamma = \pm \gamma_1 \gamma_2\cdots \gamma_t$ is a primary decomposition of the primary element $\gamma$, define $\chi_{\gamma}(\alpha) = \chi_{\gamma_1}(\alpha)\chi_{\gamma_2}(\alpha)\cdots\chi_{\gamma_t}(\alpha)$. Prove that $\chi_{\gamma}(\alpha) = \chi_{\gamma}(\beta)$ if $\alpha \equiv \beta \pmod \gamma$ and $\chi_{\gamma}(\alpha \beta) = \chi_\gamma(\alpha) \chi_\gamma(\beta)$. If $\rho$ is primary, show that $\chi_\rho(\alpha) \chi_\gamma(\alpha) = \chi_{-\rho \gamma}(\alpha)$.
}
\begin{proof}
If $\alpha \equiv \beta\ [\gamma]$, then $\alpha \equiv \beta\pmod {\gamma_i}, 1 \leq i \leq t$, so $\chi_{\gamma_i}(\alpha) = \chi_{\gamma_i}(\beta)$, thus $\chi_\gamma(\alpha) = \chi_\gamma(\beta)$.
By Proposition 9.3.3,
\begin{align*}
\chi_\gamma(\alpha \beta) &= \chi_{\gamma_1}(\alpha \beta)\chi_{\gamma_2}(\alpha \beta)\cdots\chi_{\gamma_t}(\alpha \beta)\\
&= \chi_{\gamma_1}(\alpha)\chi_{\gamma_2}(\alpha)\cdots\chi_{\gamma_t}(\alpha)\chi_{\gamma_1}(\beta)\chi_{\gamma_2}(\beta)\cdots\chi_{\gamma_t}(\beta)\\
&= \chi_\gamma(\alpha) \chi_{\gamma}(\beta)
\end{align*}
Finally, if $\rho = \pm \rho_1\rho_2\cdots\rho_l$ is primary, then $-\rho \gamma = \pm \rho_1\rho_2\cdots\rho_l\gamma_1\gamma_2\cdots\gamma_t$ is primary by Ex. 9.17, therefore
$$\chi_{-\rho \gamma}(\alpha) = (\chi_{\rho_1} \chi_{\rho_2}\cdots \chi_{\rho_l}\chi_{\gamma_1} \chi_{\gamma_2}\cdots \chi_{\gamma_t} )(\alpha)= \chi_\rho(\alpha)\chi_\gamma(\alpha).$$
\end{proof}
Note: The unit $-1$ is primary by definition, and $-1$ is the opposite of the empty product, so for all $\alpha$ in $D$, $\chi_{-1}(\alpha) = 1$ by definition. The result of the exercises remain true if we accept the unit $-1$ as a primary element.
\paragraph{Ex. 9.19}
{\it Suppose that $\gamma = A + B \omega$ is primary and that $A = 3M-1$ and $B = 3N$. Prove that $\chi_\gamma(\omega) = \omega^{M+N}$ and that $\chi_\gamma(\lambda) = \omega^{2M}$.
}
\begin{proof}
We verify first that if $\gamma = -\gamma_1 \gamma_2$, with
$$
\begin{array}{lll}
\gamma = A+B\omega, & A=3M-1, & B=3N, \\
\gamma_1 = A_1+B_1\omega,& A_1= 3M_1-1, & B_1=3N_1, \\
\gamma_2 = A_2+B_2\omega,& A_2= 3M_2-1, & B_2=3N_2,
\end{array}
$$
then $M \equiv M_1+M_2\pmod 3,N \equiv N_1+N_2 \pmod 3$.
$$-\gamma_1 \gamma_2 = -A_1A_2 + B_1 B_2 + (- A_1B_2-A_2B_1+B_1B_2) \omega=A+B\omega,$$
therefore
$$3M-1 = A =-A_1A_2 + B_1 B_2 \equiv 3(M_1+M_2) - 1\pmod 9,$$
thus $M\equiv M_1+M_2\pmod 3.$
$$3N = B = -A_1B_2-A_2B_1+B_1B_2 \equiv 3 (N_1+N_2)\pmod 9,$$
thus $N \equiv N_1+N_2 \pmod 3.$
By induction, if $\gamma = \pm \gamma_1 \gamma_2\cdots \gamma_t = (-1)^{t-1} \gamma_1 \gamma_2\cdots \gamma_t$, where $\gamma_i = A_i+B_i\omega,A_i= 3M_i-1,B_i=3N_i$, then
$$M \equiv M_1+\cdots+M_t\pmod 3, N \equiv N_1+\cdots + N_t \pmod 3.$$
By Exercise 9.3,
\begin{align*}
\chi_\gamma(\omega) &= \chi_{\gamma_1}(\omega)\cdots\chi_{\gamma_t}(\omega)\\
&=\omega^{M_1+N_1}\cdots \omega^{M_t+N_t}\\
&=\omega^{(M_1+\cdots+M_t)+(N_1+\cdots+N_t)}\\
&=\omega^{M+N},
\end{align*}
and by Eisenstein's result,
\begin{align*}
\chi_\gamma(\lambda) &= \chi_{\gamma_1}(\lambda)\cdots\chi_{\gamma_t}(\lambda)\\
&=\omega^{2M_1}\cdots \omega^{2M_t}\\
&=\omega^{2(M_1+\cdots+M_t)}\\
&=\omega^{2M}.
\end{align*}
Conclusion: if $\gamma = 3M-1+3N\omega$, then
$$\chi_\gamma(\omega) = \omega^{M+N}, \chi_\gamma(\lambda)=\omega^{2M}.$$
\end{proof}
\paragraph{Ex. 9.20}
{\it If $\gamma$ and $\rho$ are primary, show that $\chi_\gamma(\rho) = \chi_\rho(\gamma)$.
}
\bigskip
Important note: The following solution assumes that $\chi_{\pi_2}(\pi_1) = \chi_{\pi_1}(\pi_2)$ for any pair $\pi_1,\pi_2$ of primary primes. But Theorem 1 uses the hypothesis $N(\pi_1) \ne N(\pi_2)$ to prove Cubic Reciprocity.
We can complete the proof in the case where $N(\pi_1) = N(\pi_2)$. Since $\pi_1,\pi_2$ are primary primes, then $\pi_1 = \pi_2$ or $\pi_1 = \overline{\pi_2}$.
In the case $\pi_1 = \pi_2$, then $\chi_{\pi_2}(\pi_1) = 0 = \chi_{\pi_1}(\pi_2)$.
To prove that $\legendre{\overline{\pi}}{\pi} = \legendre{\pi}{\overline{\pi}}$, we begin with a particular case of the proposition:
\medskip
{\bf Lemma.} {\it Let $n\in \Z$ be a primary element in $A$, and let $\pi$ be a primary prime such that $N(\pi) = p \equiv 1 \pmod 3$. Then
$$\legendre{n}{\pi}_3 = \legendre{\pi}{n}_3.$$
}
\begin{proof}
If $p \mid n$, then $\legendre{n}{\pi}_3 =0 = \legendre{\pi}{n}_3.$ Now we assume that $p \wedge n = 1$.
The decomposition of $n$ is of the form
\begin{align*} n &= \pm p_1 \cdots p_s q_1 \cdots q_r\ (p_i \equiv 1 \ [3], q_j \equiv -1 \ [3])\\
&= \pm \pi_1\overline{\pi_1} \cdots \pi_s \overline{\pi}_s q_1 \cdots q_r,
\end{align*}
where $\pi_i, \overline{\pi_i} (1\leq i \leq s)$ and $q_j (1 \leq j \leq r)$ are primary prime.
Since $N(\pi_i) = p_i \ne p$ and $N(\pi) = p \ne N(q_j) =q_j^2$, Theorem 1 shows that
\begin{align*}
\legendre{n}{\pi}_3 &=\legendre{\pi_1}{\pi}_3\legendre{\overline{\pi_1}}{\pi}_3\cdots \legendre{\pi_s}{\pi}_3\legendre{\overline{\pi_s}}{\pi}_3 \legendre{q_1}{\pi}_3 \cdots \legendre{q_r}{\pi}_3 \\
&=\legendre{\pi}{\pi_1}_3\legendre{\pi}{\overline{\pi_1}}_3\cdots \legendre{\pi}{\pi_s}_3\legendre{\pi}{\overline{\pi_s}}_3 \legendre{\pi}{q_1}_3 \cdots \legendre{\pi}{q_r}_3 \\
&= \legendre{\pi}{n}_3.
\end{align*}
\end{proof}
We can now remove the useless hypothesis $N(\pi_1) \ne N(\pi_2)$ in Theorem 1.
\medskip
{\bf Proposition.}
Let $\pi_1,\pi_2$ be primary primes. Then
$$\legendre{\pi_2}{\pi_1}_3 = \legendre{\pi_1}{\pi_2}_3.$$
\begin{proof}
By theorem 1, it remains only the case where $N(\pi_1) = N(\pi_2)$.
If $\pi_1 = \pi_2$, then $\legendre{\pi_2}{\pi_1}_3 = \legendre{\pi_1}{\pi_2}_3 =0$.
If $\pi_1 \ne \pi_2$, since $\pi_1$ et $\pi_2$ are primary, then $\pi_1, \pi_2$ are primes such that $N(\pi_1) = N(\pi_2) = p \equiv 1 \pmod 3$, and $\pi_2 = \overline{\pi_1}$. Writing $\pi = \pi_1$, it is sufficient to prove
$$\legendre{\overline{\pi}}{\pi}_3 = \legendre{\pi}{\overline{\pi}}_3.$$
We use the ``Evans' trick'' (see [Lemmermayer, Reciprocity Laws p. 215]). The element $n =-( \pi + \overline{\pi})$ is a rationnal integer, which is primary. The Lemma gives then
\begin{align*}
\legendre{\overline{\pi}}{\pi}_3 &= \legendre{\pi + \overline{\pi}}{\pi}_3\\
&= \legendre{-\pi - \overline{\pi}}{\pi}_3\\
&= \legendre{\pi}{-\pi - \overline{\pi}}_3\\
&= \legendre{-\overline{\pi}}{-\pi - \overline{\pi}}_3\\
&=\legendre{\overline{\pi}}{-\pi - \overline{\pi}}_3\\
&=\legendre{-\pi -\overline{\pi}}{\overline{\pi}}_3\\
&=\legendre{-\pi}{\overline{\pi}}_3\\
&=\legendre{\pi}{\overline{\pi}}_3
\end{align*}
\end{proof}
We can now give the solution of Exercise 9.20.
\begin{proof}
$\rho, \gamma$ are written
\begin{align*}
\rho&=\pm\rho_1\rho_2\cdots\rho_l,\\
\gamma &= \pm \gamma_1 \gamma_2\cdots \gamma_m,
\end{align*}
where $\rho_i,\gamma_i$ are primary primes.
By the law of Cubic Reciprocity, we obtain
\begin{align*}
\chi_\gamma(\rho) &= \prod_{j=1}^m \chi_{\gamma_j}(\rho)\\
& = \prod_{j=1}^m\prod_{i=1}^l \chi_{\gamma_j}(\rho_{i})\\
& = \prod_{i=1}^l\prod_{j=1}^m \chi_{\gamma_j}(\rho_{i})\\
& = \prod_{i=1}^l\prod_{j=1}^m \chi_{\rho_i}(\gamma_j)\\
&=\prod_{i=1}^l \chi_{\rho_i}(\gamma)\\
&=\chi_{\rho}( \gamma).
\end{align*}
(if $\gamma = -1$, or $\rho = -1$, some products are empty, but the result remains true: $\chi_{-1}(\rho) = 1 = \chi_{\rho}(-1)$.)
\end{proof}
\paragraph{Ex. 9.21}
{\it If $\gamma$ is primary, show that there are infinitely many primary primes $\pi$ such that $x^3 \equiv \gamma \pmod \pi$ is not solvable. Show also that there are infinitely many primary primes $\pi$ such that $x^3 \equiv \omega \pmod \pi$ is not solvable and the same for $x^3 \equiv \lambda \pmod \pi$. (Hint: Imitate the proof of Theorem 3 of Chapter 5.)
}
\begin{proof}
\begin{enumerate}
\item[a)] As some primary elements of $D$ may be cubes, by example $53 + 36 \omega = (-1 + 3 \omega)^3$, we must of course suppose that $\gamma$ is not the cube of some element of $D$ (in the contrary case $x^3 \equiv \gamma \pmod \pi $ is solvable for all prime $\pi$).
Note first that for all primes $\pi$ in $D$, there exists $\sigma \in D$ such that $\chi_\pi(\sigma) = \omega$. Indeed, there exist $(N\pi - 1)/3$ cubes in $(D/\pi D)^*$, which has $N\pi - 1$ elements, so there exists an element $\overline{\tau} \in (D/\pi D)^*$ which is not a cube, therefore there exists $\tau \in D$ such that $\chi_\pi(\tau) \neq 1$. If $\chi_\pi(\tau) = \omega$, we put $\sigma = \tau$ and if $\chi_\pi(\tau) = \omega^2$, we put $\sigma = \tau^2$. In the two cases, $\chi_\pi(\sigma) = \omega$.
\bigskip
Let $\gamma \in D$, where $\gamma$ is primary. Then $\gamma = \pm \gamma_1^{n_1}\gamma_2^{n_2}\cdots\gamma_p^{n_p}$, where the $\gamma_i$ are distinct primary primes.
Write $n_i = 3q_i + r_i, \ r_i \in \{0,1,2\}$. Then grouping in $\gamma'$ the $\gamma^{r_i}$ such that $r_i \ne 0$, we can write $\gamma = \delta^3 \gamma', \gamma' = \gamma_1^{r_1} \gamma_2^{r_2}\cdots \gamma_l^{r_l}, r_i \in \{1,2\}, \delta = \pm \gamma_1^{q_1}\cdots\gamma_p^{q_p} \in D$ ($-1$ is a cube). Since by hypothesis $\gamma$ is not a cube, $l\geq 1$. Moreover the equation $x^3 \equiv \gamma \pmod \pi$ is solvable iff $x^3 \equiv \gamma' \pmod \pi$ is solvable. We may then suppose that $$\gamma = \gamma_1^{r_1} \gamma_2^{r_2}\cdots \gamma_l^{r_l}, 1\leq r_i \leq 2,$$ without cubic factors.
Note that the $\gamma_i$ are not associate to $\lambda = 1-\omega$ (see Ex. 9.17).
Let $A = \{\lambda_1,\lambda_2,\ldots, \lambda_k\}$ a set (possibly empty) of distinct primary primes $\lambda_i$ (therefore they are not associate), and not associate neither to $\gamma_i, 1 \leq i \leq l$, nor to $\lambda = 1 - \omega$.
We will show that we can find a primary prime $\lambda_{k+1}$ distinct of the $\lambda_i$ with the same properties and such that the equation $x^3 \equiv \lambda \pmod {\lambda_{k+1}}$ is not solvable. This will prove the existence of infinitely many primes $\pi$ such that the equation $x^3 \equiv \lambda \pmod \pi$ is not solvable.
Using the initial note, let $\sigma \in D$ such that $\chi_{\gamma_l}(\sigma) = \omega$. As $D$ is a principal ideal domain, the Chinese Remainder Theorem is valid. Since $3 = \lambda \overline{\lambda} = -\omega^2 \lambda^2$ is relatively prime to $\gamma_i, \lambda_i$, there exists $\beta \in D$ such that
\begin{align*}
\beta &\equiv 2 \ [3],\\
\beta &\equiv 1 \ [\lambda_i] \hspace{1cm} (1\leq i\leq k),\\
\beta &\equiv 1 \ [\gamma_i] \hspace{1cm} (1 \leq i \leq l-1),\\
\beta &\equiv \sigma \ [\gamma_l].\\
\end{align*}
The first equation show that $\beta$ is primary, so $\beta= (-1)^{m-1} \beta_1\ldots \beta_m$, where the $\beta_i$ are primary primes.
By Exercise 9.20,
$$\chi_\beta(\gamma) = \chi_\beta(\gamma_1)^{r_1}\cdots\chi_\beta(\gamma_l)^{r_l} = \chi_{\gamma_1}(\beta)^{r_1}\cdots\chi_{\gamma_l}(\beta)^{r_l}.$$
As $\chi_{\gamma_i}(1) = 1 \ (1\leq i \leq l-1)$, and $\chi_{\gamma_l}(\beta) = \chi_{\gamma_l}(\sigma) =\omega$, we obtain $\chi_\beta(\gamma) = \omega^{r_l} \neq 1$, since $r_l =1$ or $r_l = 2$.
By Exercise 9.18, $\chi_\rho(\alpha) \chi_\gamma(\alpha) = \chi_{-\rho \gamma}(\alpha)$, with primary $\rho, \gamma$, so by induction, as $\beta= (-1)^{m-1} \beta_1\cdots\beta_m$,
$$\chi_\beta(\gamma) = \chi_{\beta_1}(\gamma)\cdots\chi_{\beta_m}(\gamma) \neq 1.$$
Thus there exists a subscript $j$ such that $\chi_{\beta_j}(\gamma) \neq 1$.
We can then take $\lambda_{k+1} = \beta_j$. Indeed, since $\beta \equiv 1 \ [\lambda_i]$ and $\beta \not \equiv 0\ [\gamma_i]$, $\beta_j$ is distinct of the $\lambda_i$ and $\gamma_i$, and $\beta_j$ is not associate to $\lambda$ since $\beta \equiv 2 \pmod 3$.
As $\chi_{\lambda_{k+1}}(\gamma) \neq 1$, the equation $x^3 \equiv \gamma \ [\lambda _{k+1}]$ is not solvable, so $\lambda_{k+1}$ is convenient.
Conclusion : if $\gamma \in D$ is primary and is not a cube in $D$, there exist infinitely many primes $\pi \in D$ such that the equation $x^3 \equiv \gamma \ [\pi]$ is not solvable.
\item[b)] We show that $x^3 \equiv \omega \ [\pi]$ has no solution for infinitely many primes $\pi$.
To initialize the induction, we display such a prime $\pi$, namely $\pi = 2+ 3 \omega$. Indeed, $N(\pi) = 4 + 9 - 6 = 7$, 7 is a rational prime, so $\pi$ is a primary prime in $D$, of the form $\pi = 3m-1 + 3n\omega$, with $n = m =1$, so $\chi_\pi(\omega) = \omega^{m+n} = \omega^2 \neq 1$ : the equation $x^3 \equiv \omega \ [\pi]$ is not solvable. Moreover $\pi$ is not associate to $\lambda = 1 - \omega$.
Suppose now the existence of a set $A = \{\lambda_1,\lambda_2,\ldots,\lambda_l\}, l \geq 1$, of distinct primary primes $\lambda_i$, not associate to $\lambda$ and such the equation $x^3 \equiv \omega\ [\lambda_i]$ is not solvable for each $i, \ 1\leq i \leq l$. We will show that we can add a prime $\lambda_{l+1}$ to the set $A$ with the same properties.
Let $$\beta = 3(-1)^{l-1} \lambda_1\cdots\lambda_l - 1.$$
$(-1)^{l-1} \lambda_1\cdots\lambda_l$ is primary, so $(-1)^{l-1} \lambda_1\cdots\lambda_l = 3m-1 + 3n\omega,\ m,n \in \Z$.
$\beta = 3(3m-1 + 3n\omega) - 1 = 3(3m-1) - 1 + 9n\omega = 3M-1 + 3 N \omega$, where $M = 3m-1, N = 3n$. By Exercise 9.19,
$$\chi_\beta(\omega) = \omega^{M+N} = \omega^{3m-1+3n} = \omega^2 \neq 1.$$
As $\beta = \pm \beta_1\cdots\beta_m$, where the $\beta_i$ are primary primes, $\chi_\beta(\omega) = \chi_{\beta_1}(\omega) \cdots \chi_{\beta_m}(\omega) \neq 1$, so there exists a subscript $i$ such that $\chi_{\beta_i}(\omega) \ne 1$.
Since $\beta = 3(-1)^{l-1} \lambda_1\cdots\lambda_l - 1$, $\beta_i$ is associate neither to $\lambda_i$ nor to $\lambda$. Moreover $\chi_{\beta_i}(\omega)\ne 1$, thus the equation $x^3 \equiv \omega\ [\beta_i]$ is not solvable: $\lambda_{l+1} = \beta_i$ is convenient.
Conclusion: the equation $x^3 \equiv \omega \ [\pi]$ is not solvable for infinitely many primes $\pi$.
\item[c)] We show that $x^3 \equiv \lambda \ [\pi]$ has no solution for infinitely many primes $\pi$.
To initialize the induction, we display such a prime $\pi$, namely $\pi = -4 + 3 \omega$. Indeed, $N(\pi) = 16 + 9 + 12 = 37$, 37 is a rational prime, so $\pi$ is a primary prime in $D$, of the form $\pi = 3m-1 + 3n\omega$, with $m=-1,n=1$, so $\chi_\pi(\lambda) = \omega^{2m} = \omega \neq 1$ : the equation $x^3 \equiv \lambda \ [\pi]$ is not solvable.
Suppose now the existence of a set $A = \{\lambda_1,\lambda_2,\ldots,\lambda_l\}, l \geq 1$, of distinct primary primes $\lambda_i$, not associate to $\lambda$ and such the equation $x^3 \equiv \lambda\ [\lambda_i]$ is not solvable. We will show that we can add a prime $\lambda_{l+1}$ to the set $A$ with the same properties.
Let $$\beta = 3(-1)^{l-1} \lambda_1\cdots\lambda_l - 1.$$
$(-1)^{l-1} \lambda_1\cdots\lambda_l$ is primary, so $(-1)^{l-1} \lambda_1\cdots\lambda_l = 3m-1 + 3n\omega,\ m,n \in \Z$.
$\beta = 3(3m-1 + 3n\omega) - 1 = 3(3m-1) - 1 + 9n\omega = 3M-1 + 3 N \omega$, where $M = 3m-1, N = 3n$. By Exercise 9.19,
$$\chi_\beta(\lambda) = \omega^{2M} = \omega^{2(3m-1)} = \omega \neq 1.$$
As $\beta = \pm \beta_1\cdots\beta_m$, where the $\beta_i$ are primary primes, $\chi_\beta(\omega) = \chi_{\beta_1}(\omega) \cdots \chi_{\beta_m}(\omega) \neq 1$, so there exists a subscript $i$ such that $\chi_{\beta_i}(\lambda) \ne 1$.
Since $\beta = 3(-1)^{l-1} \lambda_1\cdots\lambda_l - 1$, $\beta_i$ is associate neither to $\lambda_i$ nor to $\lambda$. Moreover $\chi_{\beta_i}(\lambda)\ne 1$, thus the equation $x^3 \equiv \lambda\ [\beta_i]$ is not solvable : $\lambda_{l+1} = \beta_i$ is convenient.
Conclusion : the equation $x^3 \equiv \lambda \ [\pi]$ is not solvable for infinitely many primes $\pi$.
\end{enumerate}
\end{proof}
\paragraph{Ex. 9.22}
{\it (continuation) Show in general that if $\gamma \in D$ and $x^3 \equiv \gamma \pmod \pi$ is solvable for all but finitely many primary primes $\pi$, then $\gamma$ is a cube in $D$.
}
\begin{proof}
Let $\gamma \in D$ and suppose that $\gamma$ is not a cube in $D$. We will show that the equation $x^3 \equiv \gamma \ [\pi]$ is not solvable for infinitely primes $\pi \in D$.
By Exercise 9.2, we can write
$$\gamma = (-1)^u\omega^v \lambda^w \gamma_1^{n_1}\cdots\gamma_p^{n_p},$$
where the $\gamma_i$ are distinct primary primes, not associate to $\lambda$. Let $v = 3q + b, w = 3q' +c, n_i = 3q_i +r_i$, with the remainders $b,c,r_i$ in $\{0,1,2\}$. Grouping the factors with null remainders, we obtain $\gamma = \delta^3 \gamma', \gamma' = \omega^b \lambda^c\gamma_1^{r_1}\cdots \gamma_l^{r_l}$, with $b,c,r_i$ in $\{1,2\}, \delta \in D, l \geq 0$ ($-1$ is a cube).
Moreover the equation $x^3 \equiv \gamma \ [\pi]$ is solvable iff the equation $x^3 \equiv \gamma'\ [\pi]$ is solvable. So we may suppose that
$$\gamma = \omega^b \lambda^c\gamma_1^{r_1}\cdots \gamma_l^{r_l},\qquad b\in \{1,2\}, c\in \{1,2\}, r_i \in \{1,2\},$$
without cubic factors.
\begin{enumerate}
\item[$\bullet$] Case 1 : $l\geq 1$.
Let $A = \{\lambda_1,\ldots,\lambda_k\}$ a possibly empty set of distinct primary primes $\lambda_i$, distinct of the $\gamma_i$, not associate to $\lambda$, and such that the equation $x^3 \equiv \gamma \ [\lambda_i]$ is not solvable. We will show that we can add a prime $\lambda_{k+1}$ with the same properties.
Suppose that $l\geq 1$. We have proved in Ex. 9.21 that there exists $\sigma \in D$ such that $\chi_{\gamma_l}(\sigma) = \omega$. Since $9,\lambda_i, \gamma_j$ are relatively prime, there exists $\beta \in D$ such that
\begin{align*}
\beta &\equiv -1\ [9]\\
\beta & \equiv 1 \ [\lambda_i], 1 \leq i \leq k\\
\beta & \equiv 1 \ [\gamma_i], 1 \leq i \leq l-1\\
\beta & \equiv \sigma\ [\gamma_l]
\end{align*}
$\beta \equiv -1 \ [9]$, thus $\beta \equiv -1 \ [3]$ : $\beta$ is primary, of the form $\beta = 3M-1+3N\omega$.
$\beta = 3M-1+3N\omega \equiv -1 \ [9]$, so $3M+3N\omega \equiv 0 \ [9]$, $M+N\omega \equiv 0 \ [3]$, thus $3\mid M,3\mid N$.
By Exercise 9.18,
\begin{align*}
\chi_\beta(\omega) &= \omega^{M+N} = 1\\
\chi_\beta(\lambda) &= \omega^{2M} = 1
\end{align*}
As $\beta$ and $\gamma_i$ are primary, $\chi_\beta(\gamma_i) = \chi_{\gamma_i}(\beta) = \chi_{\gamma_i}(1) = 1\ (1\leq i \leq l-1)$.
$\chi_\beta(\gamma) =\chi_\beta(\omega)^b \chi_\beta(\lambda)^c\chi_\beta(\gamma_1)^{r_1}\cdots\chi_\beta(\gamma_l)^{r_l} = \chi_{\beta}(\gamma_l)^{r_l} = \chi_{\gamma_l}(\beta)^{r_l} = \chi_{\gamma_l}(\sigma)^{r_l} = \omega^{r_l} \neq 1$, since $r_l \in \{1,2\}$.
$\beta = \pm \beta_1\cdots \beta_m$, with $\beta_i$ primary primes, therefore
$$\chi_\beta(\gamma) = (\chi_{\beta_1}\cdots \chi_{\beta_m})(\gamma) \neq 1. $$ Thus there exists a subscript $i$ such that $\chi_{\beta_i}(\gamma) \ne 1$, so $x^3 \equiv \gamma\ [\beta_i]$ is not solvable. Moreover $\beta \equiv 1 \ [\gamma_i]$, so $\beta_i$ is not associate to any $\gamma_j$. Similarly, $\beta_i$ is not associate to any $\gamma_j$, and $\beta \equiv -1\ [9]$, therefore $\beta_i$ is not associate to $\lambda$. So $\lambda_{k+1} = \beta_i$ is convenient.
There exist infinitely many $\pi$ such that $x^3 \equiv \gamma \ [\pi]$ is not solvable.
\item[$\bullet$] Case 2 : $l = 0$, so $\gamma = \omega^b\lambda^c,\ 1\leq b \leq 2, 1 \leq c \leq 2$.
$\pi_0 = 2 - 3 \omega$ is a primary prime ($N(\pi_0) = 19$).
Let $A = \{\lambda_1,\ldots,\lambda_k\}$ a possibly empty set of distinct primary primes $\lambda_i \neq \pi_0$ such that the equation $x^3 \equiv \gamma \ [\lambda_i]$ is not solvable. We will show that we can add a prime $\lambda_{k+1}$ with the same properties.
Let $\beta = 9 (-1)^{k-1} \lambda_1\cdots \lambda_k + 2-3\omega$.
$\beta\equiv 2 \ [3]$ : $\beta$ is primary.
Moreover $(-1)^{k-1} \lambda_1\cdots \lambda_k $ is primary, so
$$(-1)^{k-1} \lambda_1\cdots \lambda_k = 3m-1+3n\omega, m \in \mathbb{Z},n\in \mathbb{Z}.$$
Then
\begin{align*}
\beta&=9(3m-1+3n\omega)+2-3\omega\\
&=27m-7+(27n-3)\omega\\
&=3(9m-2)-1+3(9n-1)\omega\\
&=3M-1+3N\omega,
\end{align*}
where $M=9m-2,N=9n-1$.
Therefore
\begin{align*}
\chi_\beta(\omega) &= \omega^{M+N} = \omega^{9m-2+9n-1}=1\\
\chi_\beta(\lambda) &=\omega^{2M} = \omega^{2(9m-2)}=\omega^2\neq 1
\end{align*}
$\beta = \pm\beta_1\cdots\beta_m$, where the $\beta_i$ are primary primes.
$\chi_\beta(\gamma) = \chi_\beta(\omega)^b \chi_\beta(\lambda)^c = \omega^{2c} \neq 1$ since $c = 1$ or $c = 2$.
$$\chi_\beta(\gamma) = (\chi_{\beta_1}\cdots \chi_{\beta_m})(\gamma) \neq 1. $$ Thus there exists a subscript $i$ such that $\chi_{\beta_i}(\gamma) \ne 1$, so $x^3 \equiv \gamma\ [\beta_i]$ is not solvable.
As $\beta_i \mid \beta = 9 (-1)^{k-1} \lambda_1\cdots \lambda_k + 2-3\omega$, if $\beta_i = \lambda_j$ for some subscript $j$, $\lambda_j \mid \pi_0 = 2 - 3\omega$, so $\lambda_j = \pi_0$, which is a contradiction, thus $\beta_i \not \in A$. Similarly, if $\beta_i = \pi_0 = 2 - 3\omega$, then $\pi_0 \mid 9 \lambda_1\cdots\lambda_k$, and $\pi_0$ is relatively prime to $\lambda$, so $\pi_0 = \lambda_j$ for some subscript $j$ : this is a contradiction, thus $\beta_i \ne \pi_0$. $\lambda_{k+1} = \beta_i$ is convenient.
So there exist infinitely many $\pi$ such that $x^3 \equiv \gamma \ [\pi]$ is not solvable.
$\bullet$ Conclusion :
if $\gamma$ is not a cube in $D$, there exist infinitely many primes $\pi$ such that $x^3 \equiv \gamma \ [\pi]$ is not sovable.
By contraposition, if the equation $x^3 \equiv \gamma \ [\pi]$ is solvable for every prime $\pi$, at the exception perhaps of the primes in a finite set, then $\gamma$ is a cube in $D$.
\end{enumerate}
\end{proof}
\paragraph{Ex. 9.23}
{\it Suppose that $p\equiv 1 \pmod 3$. Use Exercise 5 to show that $x^3 \equiv 3 \pmod p$ is solvable in $\Z$ iff $p$ is of the form $4p = C^2 + 243 B^2$.
}
\begin{proof}
Let $p$ be a rational prime, $p \equiv 1 \pmod 3$, then $p = \pi \overline{\pi}$, where $\pi \in D$ is a primary prime : $\pi = a + b \omega = 3m-1 + 3 n\omega$.
\begin{enumerate}
\item[$\bullet$] Suppose that there exists $x \in \Z$ such that $x^3 \equiv 3 \pmod p$. Then $x^3 \equiv 3 \pmod \pi$, so $\chi_\pi(3) = 1$. By Exercise 9.5, $\omega^{2n} = \chi_\pi(3) = 1$, thus $3 \mid n$, therefore $9 \mid b = 3n$, namely $b = 9B, B \in \Z$.
$p = N\pi = a^2+b^2 -ab, 4p = (2a-b)^2+3b^2 = C^2 + 243 B^2$, where $C = 2a-b,B=b/9$.
So there exists $C,B\in \Z$ such that $4p = C^2 + 243B^2$.
\item[$\bullet$] Conversely, suppose that there exist $C,B \in \Z$ such that $4p = C^2 + 243 B^2$.
As $4p = (2a-b)^2 + 3 b^2 = C^2 + 3(9B)^2$, from the unicity proved in Exercise 8.13, we obtain $b = \pm9B$, so $9 \mid b=3n, 3 \mid n$, and $\chi_\pi(3) = \omega^{2n} = 1$.
Thus there exists $x \in D$ such that $x^3 \equiv 3 \pmod \pi$. As $p \equiv 1\pmod 3$, $D/\pi D = \{\overline{0},\ldots,\overline{p-1}\}$, so there exists $h \in \Z$ such that $x \equiv h \pmod \pi$, and $h^3 \equiv 3 \pmod \pi$.
Therefore $p = N\pi \mid N(h^3 - 3)$, namely $p \mid (h^3-3)^2$, where $p$ is a rational prime, thus $p \mid h^3 -3$ : there exists $x \in \Z$ such that $x^3 \equiv 3 \pmod p$.
Moreover $4p = C^2 + 243 B^2$ implies $p \equiv 1 \pmod 3$.
$$(p\equiv 1 \ [3]\ \mathrm{and}\ \exists x \in \mathbb{Z},\ x^3 \equiv 3 \ [p] )\iff \exists C \in \mathbb{Z}, \exists B \in \mathbb{Z},\ 4p = C^2+243 B^2.$$
\end{enumerate}
\end{proof}
\paragraph{Ex. 9.24}
{\it Let $\pi = a +b \omega$ be a complex primary element of $D = \Z[\omega]$. Put $a = 3m-1,b=3n,p = N(\pi)$.
\begin{enumerate}
\item[(a)] $(p-1)/3 \equiv -2m + n \pmod 3$.
\item[(b)] $(a^2-1)/3 \equiv m \pmod 3$.
\item[(c)] $\chi_\pi(a) = \omega^m$.
\item[(d)] $\chi_\pi(a+b) = \omega^{2n} \chi_\pi(1-\omega)$.
\end{enumerate}
}
\bigskip
{\bf Lemma.} {\it Let $a \in \Z$, $a \equiv -1 \pmod 3$, and $b\in \Z$ such that $a \wedge b = 1$. Then $\chi_a(b)= 1$.}
\bigskip
\begin{proof}(of Lemma.)
If $q$ is a rational prime, $q \equiv 2 \pmod 3$, and $q \wedge b = 1$, then $\chi_q(b) = 1$ (Prop. 9.3.4, Corollary).
If $p$ is a rational prime, $p \equiv 1 \pmod 3$ and $p \wedge b = 1$, then $p = \pi \overline{\pi}$, with $\pi$ primary prime in $D$ (and also $\overline{\pi}$), and by definition of $\chi_p$, $\chi_p(b) = \chi_\pi(b) \chi_{\overline{\pi}}(b)$.
As $\chi_{\overline{\pi}}(b) = \chi_{\overline{\pi}}(\overline{b}) = \overline{\chi_\pi(b)}$ (Prop. 9.3.4(b)), then $\chi_p(b) = \chi_\pi(b) \chi_{\overline{\pi}}(b) = \chi_\pi(b)\overline{\chi_\pi(b)}= 1$.
$a$ has a decomposition in prime factors of the form :
$$a = \pm q_1q_2\cdots q_k p_1p_2\cdots p_l = \pm q_1q_2\cdots q_k \pi_1 \overline{\pi_1} \pi_2 \overline{\pi_2}\cdots \pi_l \overline{\pi_l},$$
where $q_i \equiv -1 , p_j \equiv 1 \pmod 3$, and the $\pi_k$ are primary primes (since all these elements are primary, the symbol $\pm$ is $(-1)^{k-1}$).
Thus, by definition of $\chi_a$,
$$\chi_a(b) = \chi_{q_1}(b)\cdots \chi_{q_k}(b) \chi_{\pi_1}(b)\chi_{\overline{\pi_1}}(b)\cdots \chi_{\pi_l}(b)\chi_{\overline{\pi_l}}(b) = 1.$$
The result remains true if $a = -1$ : then, by definition, $\chi_a(b) = 1$.
\end{proof}
\bigskip
\begin{proof}(of Ex 9.24.)
By hypothesis, $\pi$ is a primary element, so $\pi = 3m-1 + 3n \pi,\ m,n\in \Z$.
We don't suppose in this proof that $\pi$ is a prime element, so $p = N(\pi)$ is not necessarily prime.
\begin{enumerate}
\item[(a)]$p-1 = (3m-1)^2+(3n)^2-3n(3m-1) - 1 \equiv -6m + 3n \pmod 9$, thus $$\frac{p-1}{3} \equiv -2m + n \pmod 3.$$
\item[(b)]$a^2 - 1 = (3m-1)^2-1 \equiv -6m \pmod 9$, thus
$$\frac{a^2-1}{3} \equiv m \pmod 3.$$
\item[(c)]
As $\pi,a$ are primary, by Exercise 9.20, $\chi_\pi(a) = \chi_a(\pi)$.
Since $\pi \equiv b\omega \pmod a$, $\chi_a(\pi) = \chi_a(b) \chi_a(\omega)$.
By Exercise 9.18, as $a = 3m-1$, $\chi_a(\omega) = \omega^{M+N}$, where $M = m, N = 0$, so $$\chi_a(\omega) = \omega^m.$$
Here $a$ is relatively prime to $b$ in $\Z$ : if a rational prime $r$ divides $a,b$, then $r \mid \pi$ in $D$, thus $r \mid \overline{\pi}$, so $r^2 \mid \pi \overline{\pi} = p$ in $D$, thus $r^2 \mid p$ in $\Z$, which is absurd. The Lemma gives then $\chi_a(b) = 1$.
We conclude that $\chi_a(b) = 1,\chi_a(\omega) = \omega^m$, so $\chi_\pi(a) = \chi_a(\pi) = \chi_a(b) \chi_a(\omega) = \omega^m$.
$$\chi_\pi(a) = \omega^m.$$
\item[(d)]
$$a+b = [(a+b) \omega] \omega^{-1},$$
and
$$(a+b) \omega = (a+b\omega) +a\omega -a \equiv a(\omega-1)\pmod \pi,$$ thus
$$a+b \equiv a(1-\omega) \omega^{-1} \ [\pi],$$
$$\chi_\pi (a+b) = \chi_\pi(1-\omega) \chi_\pi(a) \chi_\pi(\omega)^{-1},$$
$\chi_\pi(a) = \omega^m$ by (c), and $\chi_\pi(\omega) = \omega^{m+n}$(as in Ex. 9.3), thus
$$\chi_\pi(a+b) = \omega^{2n} \chi_\pi(1-\omega).$$
\end{enumerate}
\end{proof}
\paragraph{Ex. 9.25}
{\it Show that $\chi_{a+b}(\pi)$ may be computed as follows.
\begin{enumerate}
\item[(a)] $\chi_{a+b}(\pi) = \chi_{a+b}(1-\omega)$.
\item[(b)] $\chi_{a+b}(\pi) = \omega^{2(m+n)}$.
\end{enumerate}
}
\begin{proof}
\begin{enumerate}
\item[(a)] $\pi = a + b \omega$ and $a \equiv -b \pmod {a+b}$, thus $\pi \equiv -b(1-\omega) \pmod {a+b}$. So
$$\chi_{a+b}(\pi) = \chi_{a+b}(b) \chi_{a+b}(1-\omega).$$
Since $a \wedge b = 1$, $(a+b) \wedge b = 1$ : as in Ex. 9.24, $\chi_{a+b}(b) = 1$. So
$$\chi_{a+b}(\pi) = \chi_{a+b}(1-\omega).$$
\item[(b)] Since the character $\chi_{a+b}$ has order 3,
\begin{align*}
\chi_{a+b}(1-\omega) &= (\chi_{a+b}((1-\omega)^2))^2\\
&=(\chi_{a+b}(-3\omega))^2\\
&=[\chi_{a+b}(3) \chi_{a+b}(\omega)]^2
\end{align*}
$\chi_{a+b}(3) = 1$ because $(a+b) \wedge 3 = (3(m+n)-1) \wedge 3 = 1$.
$\chi_{a+b}(\omega) = \omega^{m+n}$ (Ex. 9.19).
Conclusion : $$\chi_{a+b}(1-\omega) = \omega^{2(m+n)}.$$
\end{enumerate}
\end{proof}
\paragraph{Ex. 9.26}
{\it Combine the previous two exercises to conclude that $\chi_\pi(1-\omega) = \omega^{2m}$.
}
\begin{proof}
Since $\pi$ and $a+b$ are primary elements of $D$, by Exercise 9.20,
$$\chi_\pi(a+b) = \chi_{a+b}(\pi).$$
By Exercises 9.24 and 9.25,
\begin{align*}
\chi_\pi(a+b) &= \omega^{2n} \chi_\pi(1-\omega)\\
\chi_{a+b}(\pi) &= \omega^{2(m+n)}
\end{align*}
Thus $\omega^{2n} \chi_\pi(1-\omega) = \omega^{2(m+n)}$.
Consequently
$$\chi_\pi(1-\omega) = \omega^{2m}.$$
\end{proof}
\paragraph{Ex. 9.27}
{\it Let $\pi = a+bi$ be a primary irreducible in $\Z[i], b\ne 0$. Show
\begin{enumerate}
\item[(a)] $a \equiv (-1)^{(p-1)/4} \pmod 4,\ p = N(\pi)$.
\item[(b)] $b \equiv (-1)^{(p-1)/4} - 1 \pmod 4$.
\end{enumerate}
(Wrong sentence for (b) in the edition 1990.)
}
\begin{proof}
Let $\pi=a+bi$ be a primary prime in $\mathbb{Z}[i]$, $b\neq 0$, such that $p = N(\pi)$. Then
$$p = \pi \bar{\pi}=a^2+b^2\equiv 1 \ [4].$$
By Lemma 6, Section 7, $a$ is odd, $b$ even, and
$$(a\equiv 1\ [4], b\equiv 0 \ [4])\ \mathrm{or}\ (a\equiv 3\ [4], b\equiv 2 \ [4]) .$$
\begin{enumerate}
\item[(a)]
\begin{enumerate}
\item[$\bullet$] Case 1: $a \equiv 1 \ [4], b \equiv 0 [4]$. Then
$a=4A+1,b=4B,\ A,B \in \Z$, so $(a^2+b^2-1)/4= 4A^2+4B^2+2A$ is even :
$(-1)^{(p-1)/4} = (-1)^{(a^2+b^2-1)/4} = 1$, and $a\equiv 1 [4]$, thus $a \equiv (-1)^{(p-1)/4} \ [4]$.
\item[$\bullet$] Case 2: $ a\equiv 3 \ [4], b \equiv 2 \pmod 4$.
$a=4A+3,b=4B+2, a^2+b^2-1 = 16 A^2+24A+9+16B^2+16B+4-1 \equiv 4 \ [8]$, so $(a^2+b^2-1)/4 \equiv 1 \ [2], (-1)^{(p-1)/4} = (-1)^{(a^2+b^2-1)/4} = -1$, and $a \equiv -1\ [4]$, thus $a \equiv (-1)^{(p-1)/4} \ [4]$.
\end{enumerate}
In both cases,
$$ a \equiv (-1)^{(p-1)/4} \ [4].$$
\item[(b)] In every case, $b \equiv a-1 \ [4]$, thus
$$ b \equiv (-1)^{(p-1)/4}-1 \ [4].$$
\end{enumerate}
In other words, for all primary primes $\pi = a + bi$ such that $N(\pi) = p$,
\begin{align*}
p \equiv 1\ [8] &\iff \pi \equiv 1 \ [4],\\
p \equiv 5\ [8] &\iff \pi \equiv 3 + 2i \ [4].
\end{align*}
\end{proof}
\paragraph{Ex. 9.28}
{\it The notation being as in Exercise 27 show $\chi_\pi(\overline{\pi}) = \chi_\pi(2) \chi_\pi(a)$.
}
\begin{proof}
$\pi = a+bi,\overline{\pi} = a-bi = 2a-\pi \equiv 2a \ [\pi]$, thus, by Proposition 9.8.3 (e) :
$$\chi_\pi(\overline{\pi}) = \chi_\pi(2a) = \chi_\pi(2) \chi_\pi(a).$$
\end{proof}