-
-
Notifications
You must be signed in to change notification settings - Fork 2.3k
/
run_localGPT_API.py
206 lines (168 loc) · 6.49 KB
/
run_localGPT_API.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import logging
import os
import shutil
import subprocess
import argparse
import torch
from flask import Flask, jsonify, request
from langchain.chains import RetrievalQA
from langchain.embeddings import HuggingFaceInstructEmbeddings
# from langchain.embeddings import HuggingFaceEmbeddings
from run_localGPT import load_model
from prompt_template_utils import get_prompt_template
# from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.vectorstores import Chroma
from werkzeug.utils import secure_filename
from constants import CHROMA_SETTINGS, EMBEDDING_MODEL_NAME, PERSIST_DIRECTORY, MODEL_ID, MODEL_BASENAME
# API queue addition
from threading import Lock
request_lock = Lock()
if torch.backends.mps.is_available():
DEVICE_TYPE = "mps"
elif torch.cuda.is_available():
DEVICE_TYPE = "cuda"
else:
DEVICE_TYPE = "cpu"
SHOW_SOURCES = True
logging.info(f"Running on: {DEVICE_TYPE}")
logging.info(f"Display Source Documents set to: {SHOW_SOURCES}")
EMBEDDINGS = HuggingFaceInstructEmbeddings(model_name=EMBEDDING_MODEL_NAME, model_kwargs={"device": DEVICE_TYPE})
# uncomment the following line if you used HuggingFaceEmbeddings in the ingest.py
# EMBEDDINGS = HuggingFaceEmbeddings(model_name=EMBEDDING_MODEL_NAME)
# if os.path.exists(PERSIST_DIRECTORY):
# try:
# shutil.rmtree(PERSIST_DIRECTORY)
# except OSError as e:
# print(f"Error: {e.filename} - {e.strerror}.")
# else:
# print("The directory does not exist")
# run_langest_commands = ["python", "ingest.py"]
# if DEVICE_TYPE == "cpu":
# run_langest_commands.append("--device_type")
# run_langest_commands.append(DEVICE_TYPE)
# result = subprocess.run(run_langest_commands, capture_output=True)
# if result.returncode != 0:
# raise FileNotFoundError(
# "No files were found inside SOURCE_DOCUMENTS, please put a starter file inside before starting the API!"
# )
# load the vectorstore
DB = Chroma(
persist_directory=PERSIST_DIRECTORY,
embedding_function=EMBEDDINGS,
client_settings=CHROMA_SETTINGS,
)
RETRIEVER = DB.as_retriever()
LLM = load_model(device_type=DEVICE_TYPE, model_id=MODEL_ID, model_basename=MODEL_BASENAME)
prompt, memory = get_prompt_template(promptTemplate_type="llama", history=False)
QA = RetrievalQA.from_chain_type(
llm=LLM,
chain_type="stuff",
retriever=RETRIEVER,
return_source_documents=SHOW_SOURCES,
chain_type_kwargs={
"prompt": prompt,
},
)
app = Flask(__name__)
@app.route("/api/delete_source", methods=["GET"])
def delete_source_route():
folder_name = "SOURCE_DOCUMENTS"
if os.path.exists(folder_name):
shutil.rmtree(folder_name)
os.makedirs(folder_name)
return jsonify({"message": f"Folder '{folder_name}' successfully deleted and recreated."})
@app.route("/api/save_document", methods=["GET", "POST"])
def save_document_route():
if "document" not in request.files:
return "No document part", 400
file = request.files["document"]
if file.filename == "":
return "No selected file", 400
if file:
filename = secure_filename(file.filename)
folder_path = "SOURCE_DOCUMENTS"
if not os.path.exists(folder_path):
os.makedirs(folder_path)
file_path = os.path.join(folder_path, filename)
file.save(file_path)
return "File saved successfully", 200
@app.route("/api/run_ingest", methods=["GET"])
def run_ingest_route():
global DB
global RETRIEVER
global QA
try:
if os.path.exists(PERSIST_DIRECTORY):
try:
shutil.rmtree(PERSIST_DIRECTORY)
except OSError as e:
print(f"Error: {e.filename} - {e.strerror}.")
else:
print("The directory does not exist")
run_langest_commands = ["python", "ingest.py"]
if DEVICE_TYPE == "cpu":
run_langest_commands.append("--device_type")
run_langest_commands.append(DEVICE_TYPE)
result = subprocess.run(run_langest_commands, capture_output=True)
if result.returncode != 0:
return "Script execution failed: {}".format(result.stderr.decode("utf-8")), 500
# load the vectorstore
DB = Chroma(
persist_directory=PERSIST_DIRECTORY,
embedding_function=EMBEDDINGS,
client_settings=CHROMA_SETTINGS,
)
RETRIEVER = DB.as_retriever()
prompt, memory = get_prompt_template(promptTemplate_type="llama", history=False)
QA = RetrievalQA.from_chain_type(
llm=LLM,
chain_type="stuff",
retriever=RETRIEVER,
return_source_documents=SHOW_SOURCES,
chain_type_kwargs={
"prompt": prompt,
},
)
return "Script executed successfully: {}".format(result.stdout.decode("utf-8")), 200
except Exception as e:
return f"Error occurred: {str(e)}", 500
@app.route("/api/prompt_route", methods=["GET", "POST"])
def prompt_route():
global QA
global request_lock # Make sure to use the global lock instance
user_prompt = request.form.get("user_prompt")
if user_prompt:
# Acquire the lock before processing the prompt
with request_lock:
# print(f'User Prompt: {user_prompt}')
# Get the answer from the chain
res = QA(user_prompt)
answer, docs = res["result"], res["source_documents"]
prompt_response_dict = {
"Prompt": user_prompt,
"Answer": answer,
}
prompt_response_dict["Sources"] = []
for document in docs:
prompt_response_dict["Sources"].append(
(os.path.basename(str(document.metadata["source"])), str(document.page_content))
)
return jsonify(prompt_response_dict), 200
else:
return "No user prompt received", 400
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--port", type=int, default=5110, help="Port to run the API on. Defaults to 5110.")
parser.add_argument(
"--host",
type=str,
default="127.0.0.1",
help="Host to run the UI on. Defaults to 127.0.0.1. "
"Set to 0.0.0.0 to make the UI externally "
"accessible from other devices.",
)
args = parser.parse_args()
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(filename)s:%(lineno)s - %(message)s", level=logging.INFO
)
app.run(debug=False, host=args.host, port=args.port)