We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
请问vad在多进程会卡主要怎么解决呢?
def post_process(vad_model, refWavPath: str, svcWav: str): """_summary_ Args: ref_wave_path (str): Path of ref audio. svc_wave_path (str): Path of svc audio. Returns: _type_: _description_ """ ref_wave, _ = librosa.load(refWavPath, sr=16000) tmp_wave = torch.from_numpy(ref_wave).squeeze(0) tag_wave = get_speech_timestamps( tmp_wave, vad_model, threshold=0.2, sampling_rate=16000 ) ref_wave[:] = 0 for tag in tag_wave: ref_wave[tag["start"]: tag["end"]] = 1 ref_wave = np.repeat(ref_wave, 2, -1) min_len = min(len(ref_wave), len(svcWav)) ref_wave = ref_wave[:min_len] svc_wave = svcWav[:min_len] return svc_wave, 32000 def inference_with_auto_slice(self, tgtWav: str, savePath: str, spkName: str = None, f0scale: float = 1.0): bret = False logger.info( f"Input params: tgtWav={tgtWav}, savePath={savePath}, spkName={spkName}, f0scale={f0scale}") savePath = Path(savePath) savePath.parent.mkdir(parents=True, exist_ok=True) try: vadModel = init_jit_model("vad/assets/silero_vad.jit") vadModel.eval() ppg = self.whisper_inference(tgtWav) vec = self.hubert_inference(tgtWav) pit = compute_f0_sing(tgtWav, self.device) # Auto speaker select depend on target spk F0 and target wav F0 spkNpy, pit = self._spk_auto_select(pit, f0scale) spk = torch.FloatTensor(spkNpy) ppg = np.repeat(ppg, 2, 0) ppg = torch.FloatTensor(ppg) vec = np.repeat(vec, 2, 0) vec = torch.FloatTensor(vec) retrieval = DummyRetrieval() logger.info(f"Will run svc infer {tgtWav}") out_audio = self.svc_infer(retrieval, spk, pit, ppg, vec) logger.info(f"Finish run svc infer {tgtWav}") # new_wav, _ = post_process( # __class__.vadModel, refWavPath=tgtWav, svcWav=out_audio) logger.info(f"Will run post_process {tgtWav}") # 会卡在这里 new_wav, _ = post_process(vadModel, refWavPath=tgtWav, svcWav=out_audio) logger.info(f"Finish run post_process {tgtWav}") wavfile.write(savePath, self.svcModelConfig.data.sampling_rate, new_wav) bret = True except Exception as e: logger.error(traceback.format_exc()) finally: return bret
请问有哪位朋友遇到这个问题吗? 并且是怎么决绝的呢?谢谢您的回复
The text was updated successfully, but these errors were encountered:
No branches or pull requests
请问vad在多进程会卡主要怎么解决呢?
请问有哪位朋友遇到这个问题吗? 并且是怎么决绝的呢?谢谢您的回复
The text was updated successfully, but these errors were encountered: