English | 简体中文
Before deployment, two steps require confirmation
-
- Software and hardware should meet the requirements. Please refer to FastDeploy Environment Requirements
-
- Install FastDeploy Python whl package. Refer to FastDeploy Python Installation
This directory provides examples that infer.py
fast finishesshes the deployment of PP-Tracking on CPU/GPU and GPU accelerated by TensorRT. The script is as follows
# Download deployment example code
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd FastDeploy/examples/vision/tracking/pptracking/python
# Download PP-Tracking model files and test videos
wget https://bj.bcebos.com/paddlehub/fastdeploy/fairmot_hrnetv2_w18_dlafpn_30e_576x320.tgz
tar -xvf fairmot_hrnetv2_w18_dlafpn_30e_576x320.tgz
wget https://bj.bcebos.com/paddlehub/fastdeploy/person.mp4
# CPU inference
python infer.py --model fairmot_hrnetv2_w18_dlafpn_30e_576x320 --video person.mp4 --device cpu
# GPU inference
python infer.py --model fairmot_hrnetv2_w18_dlafpn_30e_576x320 --video person.mp4 --device gpu
# TensorRT inference on GPU (Attention: It is somewhat time-consuming for the operation of model serialization when running TensorRT inference for the first time. Please be patient.)
python infer.py --model fairmot_hrnetv2_w18_dlafpn_30e_576x320 --video person.mp4 --device gpu --use_trt True
fd.vision.tracking.PPTracking(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
PP-Tracking model loading and initialization, among which model_file, params_file, and config_file are the Paddle inference files exported from the training model. Refer to Model Export for more information
Parameter
- model_file(str): Model file path
- params_file(str): Parameter file path
- config_file(str): Inference deployment configuration file
- runtime_option(RuntimeOption): Backend inference configuration. None by default, which is the default configuration
- model_format(ModelFormat): Model format. Paddle format by default
PPTracking.predict(frame)Model prediction interface. Input images and output detection results.
Parameter
- frame(np.ndarray): Input data in HWC or BGR format. The video frame is obtained through: _,frame=cap.read()
Return
Return
fastdeploy.vision.MOTResult
structure. Refer to Vision Model Prediction Results for the description of the structure
Users can modify the following pre-processing parameters to their needs, which affects the final inference and deployment results