English | 简体中文
Before deployment, two steps require confirmation
-
- Software and hardware should meet the requirements. Please refer to FastDeploy Environment Requirements
-
- Install FastDeploy Python whl package. Refer to FastDeploy Python Installation
This directory provides examples that infer.py
fast finishes the deployment of RetinaFace on CPU/GPU and GPU accelerated by TensorRT. The script is as follows
# Download the example code for deployment
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd examples/vision//retinaface/python/
# Download retinaface model files and test images
wget https://bj.bcebos.com/paddlehub/fastdeploy/Pytorch_RetinaFace_mobile0.25-640-640.onnx
wget https://raw.githubusercontent.com/DefTruth/lite.ai.toolkit/main/examples/lite/resources/test_lite_face_detector_3.jpg
# CPU inference
python infer.py --model Pytorch_RetinaFace_mobile0.25-640-640.onnx --image test_lite_face_detector_3.jpg --device cpu
# GPU inference
python infer.py --model Pytorch_RetinaFace_mobile0.25-640-640.onnx --image test_lite_face_detector_3.jpg --device gpu
# TensorRT inference on GPU
python infer.py --model Pytorch_RetinaFace_mobile0.25-640-640.onnx --image test_lite_face_detector_3.jpg --device gpu --use_trt True
The visualized result after running is as follows
fastdeploy.vision.facedet.RetinaFace(model_file, params_file=None, runtime_option=None, model_format=ModelFormat.ONNX)
RetinaFace model loading and initialization, among which model_file is the exported ONNX model format
Parameter
- model_file(str): Model file path
- params_file(str): Parameter file path. No need to set when the model is in ONNX format
- runtime_option(RuntimeOption): Backend inference configuration. None by default, which is the default configuration
- model_format(ModelFormat): Model format. ONNX format by default
RetinaFace.predict(image_data, conf_threshold=0.25, nms_iou_threshold=0.5)Model prediction interface. Input images and output detection results.
Parameter
- image_data(np.ndarray): Input data in HWC or BGR format
- conf_threshold(float): Filtering threshold of detection box confidence
- nms_iou_threshold(float): iou threshold during NMS processing
Return
Return
fastdeploy.vision.FaceDetectionResult
structure. Refer to Vision Model Prediction Results for its description.
Users can modify the following pre-processing parameters to their needs, which affects the final inference and deployment results
- size(list[int]): This parameter changes the size of the resize used during preprocessing, containing two integer elements for [width, height] with default value [640, 640]
- variance(list[float]): Specify the variance value in retinaface. Default [0.1,0.2]. Normally without modification.
- min_sizes(list[list[int]]): Set width and height of anchor in retinaface. Default {{16, 32}, {64, 128}, {256, 512}}, corresponding to the step size 8, 16 and 32
- downsample_strides(list[int]): This parameter is used to change the down-sampling multiple of the feature map that generates anchor, containing three integer elements that represent the default down-sampling multiple for generating anchor. Default value [8, 16, 32]
- landmarks_per_face(int): Specify the number of keypoints in the face detected. Default 5.