-
Direct downloading
- The semantic scene completion dataset v1.1 (SemanticKITTI voxel data, 700 MB) from SemanticKITTI website.
- The RGB images (Download odometry data set (color, 65 GB)) from KITTI Odometry website.
- The calibration and pose files from voxformer/preprocess/data_odometry_calib/sequences.
- The preprocessed ground truth (~700MB) from labels.
- The voxelized psuedo point cloud and query proposals (~400MB) based on MobileStereoNet from sequences_msnet3d_sweep10.
-
Downloading the voxel and image data first, then following the commands in voxformer/preprocess to create labels and sequences_msnet3d_sweep10. You need to choose this option if you would like to use different data or depth models.
The data is organized in the following format:
/kitti/dataset/
└── sequences/
│ ├── 00/
│ │ ├── poses.txt
│ │ ├── calib.txt
│ │ ├── image_2/
│ │ ├── image_3/
│ | ├── voxels/
│ | ├ 000000.bin
│ | ├ 000000.label
│ | ├ 000000.occluded
│ | ├ 000000.invalid
│ | ├ 000005.bin
│ | ├ 000005.label
│ | ├ 000005.occluded
│ | ├ 000005.invalid
│ ├── 01/
│ ├── 02/
│ .
│ └── 21/
└── labels/
│ ├── 00/
│ │ ├── 000000_1_1.npy
│ │ ├── 000000_1_2.npy
│ │ ├── 000005_1_1.npy
│ │ ├── 000005_1_2.npy
│ ├── 01/
│ .
│ └── 10/
└── sequences_msnet3d_sweep10/
├── 00/
│ ├── voxels/
│ │ ├ 000000.pseudo
│ │ ├ 000005.pseudo
│ ├── queries/
│ │ ├ 000000.query
│ │ ├ 000005.query
├── 01/
├── 02/
.
└── 21/