This repository has been archived by the owner on Nov 25, 2020. It is now read-only.
forked from abhishekchopra13/nwoc_algorithms
-
Notifications
You must be signed in to change notification settings - Fork 52
/
BellmanFord.cpp
141 lines (121 loc) · 3.43 KB
/
BellmanFord.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
// A C++ program for Bellman-Ford's single source
// shortest path algorithm.
#include <bits/stdc++.h>
using namespace std;
// a structure to represent a weighted edge in graph
struct Edge {
int src, dest, weight;
};
// a structure to represent a connected, directed and
// weighted graph
struct Graph {
// V-> Number of vertices, E-> Number of edges
int V, E;
// graph is represented as an array of edges.
struct Edge* edge;
};
// Creates a graph with V vertices and E edges
struct Graph* createGraph(int V, int E)
{
struct Graph* graph = new Graph;
graph->V = V;
graph->E = E;
graph->edge = new Edge[E];
return graph;
}
// A utility function used to print the solution
void printArr(int dist[], int n)
{
printf("Vertex Distance from Source\n");
for (int i = 0; i < n; ++i)
printf("%d \t\t %d\n", i, dist[i]);
}
// The main function that finds shortest distances from src to
// all other vertices using Bellman-Ford algorithm. The function
// also detects negative weight cycle
void BellmanFord(struct Graph* graph, int src)
{
int V = graph->V;
int E = graph->E;
int dist[V];
// Step 1: Initialize distances from src to all other vertices
// as INFINITE
for (int i = 0; i < V; i++)
dist[i] = INT_MAX;
dist[src] = 0;
// Step 2: Relax all edges |V| - 1 times. A simple shortest
// path from src to any other vertex can have at-most |V| - 1
// edges
for (int i = 1; i <= V - 1; i++) {
for (int j = 0; j < E; j++) {
int u = graph->edge[j].src;
int v = graph->edge[j].dest;
int weight = graph->edge[j].weight;
if (dist[u] != INT_MAX && dist[u] + weight < dist[v])
dist[v] = dist[u] + weight;
}
}
// Step 3: check for negative-weight cycles. The above step
// guarantees shortest distances if graph doesn't contain
// negative weight cycle. If we get a shorter path, then there
// is a cycle.
for (int i = 0; i < E; i++) {
int u = graph->edge[i].src;
int v = graph->edge[i].dest;
int weight = graph->edge[i].weight;
if (dist[u] != INT_MAX && dist[u] + weight < dist[v]) {
printf("Graph contains negative weight cycle");
return; // If negative cycle is detected, simply return
}
}
printArr(dist, V);
return;
}
// Driver program to test above functions
int main()
{
int V ; // Number of vertices in graph
int E ; // Number of edges in graph
int s,d,w;
cout << "Enter the number of vertices and edges.\n";
cin >> V >> E;
struct Graph* graph = createGraph(V, E);
for(int i=0;i<E;i++)
{
cout << "Enter the source vertex, destination vertex and the edge weight.\n";
cin >> s >> d >> w;
graph->edge[i].src = s;
graph->edge[i].dest = d;
graph->edge[i].weight = w;
}
BellmanFord(graph, 0);
return 0;
}
/*
SAMPLE INPUT :
Enter the number of vertices and edges.
5 8
Enter the source vertex, destination vertex and the edge weight.
0 1 -1
Enter the source vertex, destination vertex and the edge weight.
0 2 4
Enter the source vertex, destination vertex and the edge weight.
1 2 3
Enter the source vertex, destination vertex and the edge weight.
1 3 2
Enter the source vertex, destination vertex and the edge weight.
1 4 2
Enter the source vertex, destination vertex and the edge weight.
3 2 5
Enter the source vertex, destination vertex and the edge weight.
3 1 1
Enter the source vertex, destination vertex and the edge weight.
4 3 -3
SAMPLE OUTPUT :
Vertex Distance from Source
0 0
1 -1
2 2
3 -2
4 1
*/