-
Notifications
You must be signed in to change notification settings - Fork 0
/
Wolfram CDF
1079 lines (1060 loc) · 55.4 KB
/
Wolfram CDF
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.cdf.text *)
(*** Wolfram CDF File ***)
(* http://www.wolfram.com/cdf *)
(* CreatedBy='Mathematica 8.0' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 150, 7]
NotebookDataLength[ 56469, 1069]
NotebookOptionsPosition[ 55987, 1049]
NotebookOutlinePosition[ 56544, 1071]
CellTagsIndexPosition[ 56501, 1068]
WindowTitle->CDF Plugin Example - State Committee Testimony
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[BoxData[
TagBox[
StyleBox[
DynamicModuleBox[{$CellContext`baseInterestRate$$ =
0.05, $CellContext`creditMarketHistory$$ = CompressedData["
1:eJyVkWtQCwAAx6fOI+ZVLRduSFEnSaJ0uj8SxaJa20VctKlWp9pFybUeSrrD
oinbWrU17fZQrcweyHVFHtcNJy6nKa+LrUs1FcM8vvjud/f7/PvwW5GUGXt0
GoFAYP5RKPiLAuOE4IDTvfVotTlEhGl5OJETkG7dVgznleNPkk8Vg7PorkVG
ywWXGqwWfD4G6SubX8EKBp6M1/VpaUfQz/JPatVRQfhPIgZKY7bKgDuH/X3P
lZeBWH1KErqKh+MGk30ONx/OM3PbvKw5MFMiiRQ6F+EZLdLyMAEif57MrBsW
YvDbNTU94Apef9yYdTqejzQmi30oWIx7plGKi5MQ1tDsh7YeCcqcc8dclAI8
Ni7qb2BLkPAiZGcvRwgzp4tYaRbiLZmReW53FZicomd6cwMO7hru/nFcDNpA
WBOTIoat0EeVXiFDx+gyeh5XhZ52xyTPVAluaTpj+3hisBJqIh0C61FGyouz
GkRoiOr8Hu7DR0zeptTJrDrMG00r7eXz4Cc/kR0dJYCu6P1AxZ/OW447e99F
KfIs3nsYZ6Uof5hY+vy8DI5Da2aXLG/ClGcCq+BAI1Y/tX5yrVBC7kRaMitI
CcalGo8UZxW8mWV79eRmSCyXZgwZm5FywXW6vlCFlfYDTZupEmSOidwGFRKs
ve9jMbqLsMQG5f5NYkzm0/tdb1/F0rSP9WeuNMD/rh87dEwKLTeiPz9OjI0p
k+uK+dWY+8gYn/6uBG4jE9Rvh5ggVlbG3KwtgYhPs5JHk+ESwzo81Jf873vO
2AM3hxABqqYkFGK0Apfl4u2dEUqcCbTbaYFqDLsW/ZB9aEHLgi9B7t1qWBbL
zU3bNFhP6trim6tHe/T8EG/TTRTYjxZKjXq89HypHmzUYfvFhb9IvjqMkO6Y
Hm/VYjzIr0Px5joM5OyvPx310PLvl3gpdPDfu0O4XK2Fh3oer6r6BkYmsp5l
tLeBmdFIsiReR+XVWsN5vQaFrXIT47IWhtk9X9bpNOhKZVu7fdUYEDHoHhua
McEJX+Y+1YbfrCdu1Q==
"], $CellContext`dist$$ =
WeibullDistribution, $CellContext`events$$ = CompressedData["
1:eJwBLQPS/CFib1JlAQAAAGQAAACm9jwmEQDGPxf2T8u6788/RrIZZG0Zmz9I
3ZqZB85LP57L+d0ZTSs/xNBbrnxtnT9FJrRDYb9mPzmDlK0cqMg//QzFLgAD
lT/jXqSQwwnMP6XjRdarTJ8/9XxpoyqukT9tkAbKbQHHP9N68Nv9Ftw/vENI
6sY1UD8o+ZGLXFKUP9XKshZ7acc/lFLfME45sz9oW6FjhfvdP8idQQi/p9c/
n4GEwWcIdj8ko/tGrM0oP1X48/e7EbQ/8LKAQr1SkD9TWOKVK5iDP2BJk6EK
mbQ/9Su2wxE/pT9eR0HOsz4hP3PRpf+km6g/P5JVl9XPmT/GfOOt6KGQP15Q
I4aZXJU/LvxpabyU6T7XX6DU9d2qP3H74UHuL0M/kplRhsC8rj89/sCJpaCv
P4A36fvJ02o/JvY21g99lj/HpBQ8G9P8PkBVHxaZDsU/s/7jBEsR0j+HK+yf
ZHDlP8SAaBJVyXs/RjLaCigMgz8sD6JrbGqGPwwPk1dKt1k/Y5BkXMyYPT+r
WHqUpcikP+ofIcjepxU/EhNe0OOfOz983jEfKS8zP8GQCial27E/KfokC8gp
4j9ItQqHtN4CQJtklhv86oA/PIi5iHjFvj8jK5M9lEJBP7MOycqHEYI/YaLY
5nWT2D+H7WECCR12P6M+LIhcmn4/WBYSVS1lfz/3ok3CtZAVPyI5SMSaF9U+
+LE/M8XJij+VNoVyeC4gPxnJ8AYTezY/Z0vqjAOq/j9pP9GfP/8iP4Y9/EYH
NrU/G4S8/ZHD8j+uisHweRN/P6djxlKkPRdAUiHUC793rj+22Hv9hmdFP6qs
qdXgCcY/13VWGYwXmD8QdNYbBdSAPxOr79v659A+LGwdDj7piD9psMevfzii
P2ncTg9EybA/zCMB5UVYnj9JZxXMSGRAP+pCmkhUBvM+vDhYIAg7vj/JelAa
qbYmP0/PtAYaZcE/VVV05UrPpz+gcfkv3wxePgh4FdoSGfU/llMK6k5yVj9a
JRYGGT+wP89NFeSH9Jo/pxeW8geWwT+5wemR/HffP6dQzUnVjKI/jHxiU3Ao
7j+AWTK735nEP5Jkegc=
"], $CellContext`interestLoadCoefficient$$ =
0.004, $CellContext`interestRateVolatility$$ =
0.02, $CellContext`visualizationFunction$$ =
ListPlot, $CellContext`\[Mu]$$ = 0.2, $CellContext`\[Sigma]$$ = 0.8,
Typeset`show$$ = True, Typeset`bookmarkList$$ = {},
Typeset`bookmarkMode$$ = "Menu", Typeset`animator$$, Typeset`animvar$$ =
1, Typeset`name$$ = "\"untitled\"", Typeset`specs$$ = {{{
Hold[$CellContext`interestLoadCoefficient$$], 0.004,
Tooltip[
"sensitivity coefficient",
"the higher this value the more having a high outstanding principal \
balance will increase the borrower has to pay on new bonds"]}, 0.001, 0.016,
0.001}, {{
Hold[$CellContext`visualizationFunction$$], ListPlot,
"visualization function"}, {
ListPlot -> "ListPlot", ListLogPlot ->
"ListLogPlot", $CellContext`statistics -> "statistics"}}, {{
Hold[$CellContext`dist$$], WeibullDistribution}, {
WeibullDistribution, GammaDistribution, LogNormalDistribution}}, {{
Hold[$CellContext`\[Mu]$$], 0.2}, 0.1, 1, 0.1}, {{
Hold[$CellContext`\[Sigma]$$], 0.8}, 0.1, 3, 0.1}, {{
Hold[$CellContext`events$$], CompressedData["
1:eJwBLQPS/CFib1JlAQAAAGQAAACm9jwmEQDGPxf2T8u6788/RrIZZG0Zmz9I
3ZqZB85LP57L+d0ZTSs/xNBbrnxtnT9FJrRDYb9mPzmDlK0cqMg//QzFLgAD
lT/jXqSQwwnMP6XjRdarTJ8/9XxpoyqukT9tkAbKbQHHP9N68Nv9Ftw/vENI
6sY1UD8o+ZGLXFKUP9XKshZ7acc/lFLfME45sz9oW6FjhfvdP8idQQi/p9c/
n4GEwWcIdj8ko/tGrM0oP1X48/e7EbQ/8LKAQr1SkD9TWOKVK5iDP2BJk6EK
mbQ/9Su2wxE/pT9eR0HOsz4hP3PRpf+km6g/P5JVl9XPmT/GfOOt6KGQP15Q
I4aZXJU/LvxpabyU6T7XX6DU9d2qP3H74UHuL0M/kplRhsC8rj89/sCJpaCv
P4A36fvJ02o/JvY21g99lj/HpBQ8G9P8PkBVHxaZDsU/s/7jBEsR0j+HK+yf
ZHDlP8SAaBJVyXs/RjLaCigMgz8sD6JrbGqGPwwPk1dKt1k/Y5BkXMyYPT+r
WHqUpcikP+ofIcjepxU/EhNe0OOfOz983jEfKS8zP8GQCial27E/KfokC8gp
4j9ItQqHtN4CQJtklhv86oA/PIi5iHjFvj8jK5M9lEJBP7MOycqHEYI/YaLY
5nWT2D+H7WECCR12P6M+LIhcmn4/WBYSVS1lfz/3ok3CtZAVPyI5SMSaF9U+
+LE/M8XJij+VNoVyeC4gPxnJ8AYTezY/Z0vqjAOq/j9pP9GfP/8iP4Y9/EYH
NrU/G4S8/ZHD8j+uisHweRN/P6djxlKkPRdAUiHUC793rj+22Hv9hmdFP6qs
qdXgCcY/13VWGYwXmD8QdNYbBdSAPxOr79v659A+LGwdDj7piD9psMevfzii
P2ncTg9EybA/zCMB5UVYnj9JZxXMSGRAP+pCmkhUBvM+vDhYIAg7vj/JelAa
qbYmP0/PtAYaZcE/VVV05UrPpz+gcfkv3wxePgh4FdoSGfU/llMK6k5yVj9a
JRYGGT+wP89NFeSH9Jo/pxeW8geWwT+5wemR/HffP6dQzUnVjKI/jHxiU3Ao
7j+AWTK735nEP5Jkegc=
"]}}, {{
Hold[$CellContext`baseInterestRate$$], 0.05, "base interest rate"},
0.01, 0.15, 0.01}, {{
Hold[$CellContext`interestRateVolatility$$], 0.02,
"interest rate volatility"}, 0.005, 0.03, 0.005}, {{
Hold[$CellContext`creditMarketHistory$$], CompressedData["
1:eJyVkWtQCwAAx6fOI+ZVLRduSFEnSaJ0uj8SxaJa20VctKlWp9pFybUeSrrD
oinbWrU17fZQrcweyHVFHtcNJy6nKa+LrUs1FcM8vvjud/f7/PvwW5GUGXt0
GoFAYP5RKPiLAuOE4IDTvfVotTlEhGl5OJETkG7dVgznleNPkk8Vg7PorkVG
ywWXGqwWfD4G6SubX8EKBp6M1/VpaUfQz/JPatVRQfhPIgZKY7bKgDuH/X3P
lZeBWH1KErqKh+MGk30ONx/OM3PbvKw5MFMiiRQ6F+EZLdLyMAEif57MrBsW
YvDbNTU94Apef9yYdTqejzQmi30oWIx7plGKi5MQ1tDsh7YeCcqcc8dclAI8
Ni7qb2BLkPAiZGcvRwgzp4tYaRbiLZmReW53FZicomd6cwMO7hru/nFcDNpA
WBOTIoat0EeVXiFDx+gyeh5XhZ52xyTPVAluaTpj+3hisBJqIh0C61FGyouz
GkRoiOr8Hu7DR0zeptTJrDrMG00r7eXz4Cc/kR0dJYCu6P1AxZ/OW447e99F
KfIs3nsYZ6Uof5hY+vy8DI5Da2aXLG/ClGcCq+BAI1Y/tX5yrVBC7kRaMitI
CcalGo8UZxW8mWV79eRmSCyXZgwZm5FywXW6vlCFlfYDTZupEmSOidwGFRKs
ve9jMbqLsMQG5f5NYkzm0/tdb1/F0rSP9WeuNMD/rh87dEwKLTeiPz9OjI0p
k+uK+dWY+8gYn/6uBG4jE9Rvh5ggVlbG3KwtgYhPs5JHk+ESwzo81Jf873vO
2AM3hxABqqYkFGK0Apfl4u2dEUqcCbTbaYFqDLsW/ZB9aEHLgi9B7t1qWBbL
zU3bNFhP6trim6tHe/T8EG/TTRTYjxZKjXq89HypHmzUYfvFhb9IvjqMkO6Y
Hm/VYjzIr0Px5joM5OyvPx310PLvl3gpdPDfu0O4XK2Fh3oer6r6BkYmsp5l
tLeBmdFIsiReR+XVWsN5vQaFrXIT47IWhtk9X9bpNOhKZVu7fdUYEDHoHhua
McEJX+Y+1YbfrCdu1Q==
"]}, 0.005, 0.03, 0.005}}, Typeset`size$$ = {410., {178.5, 185.5}},
Typeset`update$$ = 0, Typeset`initDone$$, Typeset`skipInitDone$$ =
False, $CellContext`interestLoadCoefficient$259$$ =
0, $CellContext`visualizationFunction$264$$ =
False, $CellContext`dist$265$$ = 0, $CellContext`\[Mu]$266$$ =
0, $CellContext`\[Sigma]$267$$ = 0, $CellContext`baseInterestRate$268$$ =
0, $CellContext`interestRateVolatility$269$$ =
0, $CellContext`creditMarketHistory$270$$ = 0},
DynamicBox[Manipulate`ManipulateBoxes[
1, StandardForm,
"Variables" :> {$CellContext`baseInterestRate$$ =
0.05, $CellContext`creditMarketHistory$$ = CompressedData["
1:eJyVkWtQCwAAx6fOI+ZVLRduSFEnSaJ0uj8SxaJa20VctKlWp9pFybUeSrrD
oinbWrU17fZQrcweyHVFHtcNJy6nKa+LrUs1FcM8vvjud/f7/PvwW5GUGXt0
GoFAYP5RKPiLAuOE4IDTvfVotTlEhGl5OJETkG7dVgznleNPkk8Vg7PorkVG
ywWXGqwWfD4G6SubX8EKBp6M1/VpaUfQz/JPatVRQfhPIgZKY7bKgDuH/X3P
lZeBWH1KErqKh+MGk30ONx/OM3PbvKw5MFMiiRQ6F+EZLdLyMAEif57MrBsW
YvDbNTU94Apef9yYdTqejzQmi30oWIx7plGKi5MQ1tDsh7YeCcqcc8dclAI8
Ni7qb2BLkPAiZGcvRwgzp4tYaRbiLZmReW53FZicomd6cwMO7hru/nFcDNpA
WBOTIoat0EeVXiFDx+gyeh5XhZ52xyTPVAluaTpj+3hisBJqIh0C61FGyouz
GkRoiOr8Hu7DR0zeptTJrDrMG00r7eXz4Cc/kR0dJYCu6P1AxZ/OW447e99F
KfIs3nsYZ6Uof5hY+vy8DI5Da2aXLG/ClGcCq+BAI1Y/tX5yrVBC7kRaMitI
CcalGo8UZxW8mWV79eRmSCyXZgwZm5FywXW6vlCFlfYDTZupEmSOidwGFRKs
ve9jMbqLsMQG5f5NYkzm0/tdb1/F0rSP9WeuNMD/rh87dEwKLTeiPz9OjI0p
k+uK+dWY+8gYn/6uBG4jE9Rvh5ggVlbG3KwtgYhPs5JHk+ESwzo81Jf873vO
2AM3hxABqqYkFGK0Apfl4u2dEUqcCbTbaYFqDLsW/ZB9aEHLgi9B7t1qWBbL
zU3bNFhP6trim6tHe/T8EG/TTRTYjxZKjXq89HypHmzUYfvFhb9IvjqMkO6Y
Hm/VYjzIr0Px5joM5OyvPx310PLvl3gpdPDfu0O4XK2Fh3oer6r6BkYmsp5l
tLeBmdFIsiReR+XVWsN5vQaFrXIT47IWhtk9X9bpNOhKZVu7fdUYEDHoHhua
McEJX+Y+1YbfrCdu1Q==
"], $CellContext`dist$$ =
WeibullDistribution, $CellContext`events$$ = CompressedData["
1:eJwBLQPS/CFib1JlAQAAAGQAAACm9jwmEQDGPxf2T8u6788/RrIZZG0Zmz9I
3ZqZB85LP57L+d0ZTSs/xNBbrnxtnT9FJrRDYb9mPzmDlK0cqMg//QzFLgAD
lT/jXqSQwwnMP6XjRdarTJ8/9XxpoyqukT9tkAbKbQHHP9N68Nv9Ftw/vENI
6sY1UD8o+ZGLXFKUP9XKshZ7acc/lFLfME45sz9oW6FjhfvdP8idQQi/p9c/
n4GEwWcIdj8ko/tGrM0oP1X48/e7EbQ/8LKAQr1SkD9TWOKVK5iDP2BJk6EK
mbQ/9Su2wxE/pT9eR0HOsz4hP3PRpf+km6g/P5JVl9XPmT/GfOOt6KGQP15Q
I4aZXJU/LvxpabyU6T7XX6DU9d2qP3H74UHuL0M/kplRhsC8rj89/sCJpaCv
P4A36fvJ02o/JvY21g99lj/HpBQ8G9P8PkBVHxaZDsU/s/7jBEsR0j+HK+yf
ZHDlP8SAaBJVyXs/RjLaCigMgz8sD6JrbGqGPwwPk1dKt1k/Y5BkXMyYPT+r
WHqUpcikP+ofIcjepxU/EhNe0OOfOz983jEfKS8zP8GQCial27E/KfokC8gp
4j9ItQqHtN4CQJtklhv86oA/PIi5iHjFvj8jK5M9lEJBP7MOycqHEYI/YaLY
5nWT2D+H7WECCR12P6M+LIhcmn4/WBYSVS1lfz/3ok3CtZAVPyI5SMSaF9U+
+LE/M8XJij+VNoVyeC4gPxnJ8AYTezY/Z0vqjAOq/j9pP9GfP/8iP4Y9/EYH
NrU/G4S8/ZHD8j+uisHweRN/P6djxlKkPRdAUiHUC793rj+22Hv9hmdFP6qs
qdXgCcY/13VWGYwXmD8QdNYbBdSAPxOr79v659A+LGwdDj7piD9psMevfzii
P2ncTg9EybA/zCMB5UVYnj9JZxXMSGRAP+pCmkhUBvM+vDhYIAg7vj/JelAa
qbYmP0/PtAYaZcE/VVV05UrPpz+gcfkv3wxePgh4FdoSGfU/llMK6k5yVj9a
JRYGGT+wP89NFeSH9Jo/pxeW8geWwT+5wemR/HffP6dQzUnVjKI/jHxiU3Ao
7j+AWTK735nEP5Jkegc=
"], $CellContext`interestLoadCoefficient$$ =
0.004, $CellContext`interestRateVolatility$$ =
0.02, $CellContext`visualizationFunction$$ =
ListPlot, $CellContext`\[Mu]$$ = 0.2, $CellContext`\[Sigma]$$ = 0.8},
"ControllerVariables" :> {
Hold[$CellContext`interestLoadCoefficient$$, \
$CellContext`interestLoadCoefficient$259$$, 0],
Hold[$CellContext`visualizationFunction$$, \
$CellContext`visualizationFunction$264$$, False],
Hold[$CellContext`dist$$, $CellContext`dist$265$$, 0],
Hold[$CellContext`\[Mu]$$, $CellContext`\[Mu]$266$$, 0],
Hold[$CellContext`\[Sigma]$$, $CellContext`\[Sigma]$267$$, 0],
Hold[$CellContext`baseInterestRate$$, \
$CellContext`baseInterestRate$268$$, 0],
Hold[$CellContext`interestRateVolatility$$, \
$CellContext`interestRateVolatility$269$$, 0],
Hold[$CellContext`creditMarketHistory$$, \
$CellContext`creditMarketHistory$270$$, 0]},
"OtherVariables" :> {
Typeset`show$$, Typeset`bookmarkList$$, Typeset`bookmarkMode$$,
Typeset`animator$$, Typeset`animvar$$, Typeset`name$$,
Typeset`specs$$, Typeset`size$$, Typeset`update$$, Typeset`initDone$$,
Typeset`skipInitDone$$}, "Body" :> (SeedRandom[123]; Column[{
$CellContext`sequenceToGrid[
Labeled[
SetterBar[
Dynamic[$CellContext`dist$$, ($CellContext`events$$ = RandomReal[
#[
$CellContext`a[#][$CellContext`\[Mu]$$, $CellContext`\
\[Sigma]$$],
$CellContext`b[#][$CellContext`\[Mu]$$, $CellContext`\
\[Sigma]$$]], 100]; $CellContext`dist$$ = #)& ], {
WeibullDistribution ->
Style["Weibull", 9, FontFamily -> "Arial"], GammaDistribution ->
Style["Gamma", 9, FontFamily -> "Arial"], LogNormalDistribution ->
Style["log normal", 9, FontFamily -> "Arial"]},
BaseStyle -> {"Label"}],
Style["distribution", 10], Left],
Column[{
Style[" targeted mean", 10],
Manipulator[
Dynamic[$CellContext`\[Mu]$$, ($CellContext`events$$ =
RandomReal[
$CellContext`dist$$[
$CellContext`a[$CellContext`dist$$][#, $CellContext`\
\[Sigma]$$],
$CellContext`b[$CellContext`dist$$][#, $CellContext`\
\[Sigma]$$]], 100]; $CellContext`\[Mu]$$ = #)& ], {0.1, 1, 0.1}, ImageSize ->
Small, Appearance -> "Labeled", AppearanceElements -> None]}],
Column[{
Style[" targeted standard deviation", 10],
Manipulator[
Dynamic[$CellContext`\[Sigma]$$, ($CellContext`events$$ =
RandomReal[
$CellContext`dist$$[
$CellContext`a[$CellContext`dist$$][$CellContext`\[Mu]$$, \
#],
$CellContext`b[$CellContext`dist$$][$CellContext`\[Mu]$$, \
#]], 100]; $CellContext`\[Sigma]$$ = #)& ], {0.1, 3, 0.1}, ImageSize -> Small,
Appearance -> "Labeled", AppearanceElements -> None]}],
Column[{
Style[" base interest rate", 10],
Manipulator[
Dynamic[$CellContext`baseInterestRate$$, \
($CellContext`creditMarketHistory$$ = FoldList[Clip[# + #2, {0.01, 0.2}]& , #,
RandomReal[
NormalDistribution[
0, $CellContext`interestRateVolatility$$], 100 -
1]]; $CellContext`baseInterestRate$$ = #)& ], {0.01, 0.15,
0.01}, ImageSize -> Small, Appearance -> "Labeled",
AppearanceElements -> None]}],
Column[{
Style[" interest rate volatility", 10],
Manipulator[
Dynamic[$CellContext`interestRateVolatility$$, \
($CellContext`creditMarketHistory$$ = If[# <= 0.,
Table[$CellContext`baseInterestRate$$, {100}],
FoldList[
Clip[# + #2, {0.01,
0.2}]& , $CellContext`baseInterestRate$$,
RandomReal[
NormalDistribution[0, #], 100 -
1]]]; $CellContext`interestRateVolatility$$ = #)& ], {
0.005, 0.03, 0.005}, ImageSize -> Small, Appearance ->
"Labeled", AppearanceElements -> None]}]],
Dynamic[
Pane[
Module[{$CellContext`lhl$, $CellContext`totals$, \
$CellContext`opb$, $CellContext`borrowingRateHistory$}, $CellContext`lhl$ = \
$CellContext`loanHistoryList[$CellContext`events$$, \
$CellContext`creditMarketHistory$$, "InterestRateFunction" :>
Function[{$CellContext`el$, $CellContext`cm$, \
$CellContext`nb$, $CellContext`am$}, $CellContext`cm$ + \
$CellContext`interestLoadCoefficient$$ ($CellContext`nb$ +
If[Length[$CellContext`el$] > 0,
Total[
Map[First, $CellContext`el$]], 0])],
"AmortizationFunction" :> \
$CellContext`defaultAmortizationPeriodFunction, "SowFunction" -> ({#,
Part[#2,
1]}& )]; $CellContext`opb$ = \
$CellContext`historyToOutstandingPrincipalBalance[
Part[$CellContext`lhl$, 1]]; $CellContext`totals$ = Take[
$CellContext`totalPayments[
Part[$CellContext`lhl$, 2]],
100]; $CellContext`borrowingRateHistory$ = Cases[
Part[$CellContext`lhl$, 2], $CellContext`loan[
PatternTest[
Blank[], NumericQ],
PatternTest[
Pattern[$CellContext`r,
Blank[]], NumericQ],
PatternTest[
Blank[], NumericQ]] :> $CellContext`r, {2}, 100];
Switch[$CellContext`visualizationFunction$$,
Alternatives[ListPlot, ListLogPlot],
Column[{
Style[
Labeled[
$CellContext`visualizationFunction$$[{
Tooltip[$CellContext`totals$, "total debt payments"],
Tooltip[$CellContext`opb$,
"outstanding principal balance"],
Tooltip[$CellContext`events$$, "annual events"]}, Mesh ->
All, MeshStyle -> Directive[
AbsolutePointSize[2],
Opacity[0.3]],
Apply[Sequence, $CellContext`constantDecorations1]], {
"time",
Switch[$CellContext`visualizationFunction$$, ListPlot,
"$", ListLogPlot,
"$ \!\(\*SubscriptBox[\(log\), \(10\)]\)"]}, {
Bottom, Left}, RotateLabel -> True], FontFamily -> "Arial",
9,
GrayLevel[0.28]],
Style[
Labeled[
Show[
MapIndexed[ListPlot[#, PlotStyle -> ColorData[1][
First[#2]], Mesh -> All, MeshStyle -> ColorData[1][
First[#2]],
Apply[Sequence, $CellContext`constantDecorations2]]& , {
Tooltip[$CellContext`creditMarketHistory$$,
"market interest rate"],
Tooltip[
Map[Part[#, 2, 2]& ,
Part[$CellContext`lhl$, 2]], "borrowing rate"]}],
PlotRange -> All], {"time", "interest rate"}, {
Bottom, Left}, RotateLabel -> True], FontFamily -> "Arial",
9,
GrayLevel[0.28]]}],
Blank[],
Column[{
$CellContext`statisticalVisualization[$CellContext`events$$, \
$CellContext`totals$, $CellContext`opb$, $CellContext`creditMarketHistory$$, \
$CellContext`borrowingRateHistory$]}]]], {410, 250}, ImageSizeAction ->
"Clip", Alignment -> {Center, Center}]]},
Alignment -> {Center, Center},
BaseStyle -> {FontFamily -> "Arial"}]),
"Specifications" :> {{{$CellContext`interestLoadCoefficient$$, 0.004,
Tooltip[
"sensitivity coefficient",
"the higher this value the more having a high outstanding \
principal balance will increase the borrower has to pay on new bonds"]},
0.001, 0.016, 0.001, Appearance -> "Labeled", ImageSize ->
Small}, {{$CellContext`visualizationFunction$$, ListPlot,
"visualization function"}, {
ListPlot -> "ListPlot", ListLogPlot ->
"ListLogPlot", $CellContext`statistics ->
"statistics"}}, {{$CellContext`dist$$, WeibullDistribution}, {
WeibullDistribution, GammaDistribution, LogNormalDistribution},
ControlType -> None}, {{$CellContext`\[Mu]$$, 0.2}, 0.1, 1, 0.1,
ControlType -> None}, {{$CellContext`\[Sigma]$$, 0.8}, 0.1, 3, 0.1,
ControlType -> None}, {{$CellContext`events$$, CompressedData["
1:eJwBLQPS/CFib1JlAQAAAGQAAACm9jwmEQDGPxf2T8u6788/RrIZZG0Zmz9I
3ZqZB85LP57L+d0ZTSs/xNBbrnxtnT9FJrRDYb9mPzmDlK0cqMg//QzFLgAD
lT/jXqSQwwnMP6XjRdarTJ8/9XxpoyqukT9tkAbKbQHHP9N68Nv9Ftw/vENI
6sY1UD8o+ZGLXFKUP9XKshZ7acc/lFLfME45sz9oW6FjhfvdP8idQQi/p9c/
n4GEwWcIdj8ko/tGrM0oP1X48/e7EbQ/8LKAQr1SkD9TWOKVK5iDP2BJk6EK
mbQ/9Su2wxE/pT9eR0HOsz4hP3PRpf+km6g/P5JVl9XPmT/GfOOt6KGQP15Q
I4aZXJU/LvxpabyU6T7XX6DU9d2qP3H74UHuL0M/kplRhsC8rj89/sCJpaCv
P4A36fvJ02o/JvY21g99lj/HpBQ8G9P8PkBVHxaZDsU/s/7jBEsR0j+HK+yf
ZHDlP8SAaBJVyXs/RjLaCigMgz8sD6JrbGqGPwwPk1dKt1k/Y5BkXMyYPT+r
WHqUpcikP+ofIcjepxU/EhNe0OOfOz983jEfKS8zP8GQCial27E/KfokC8gp
4j9ItQqHtN4CQJtklhv86oA/PIi5iHjFvj8jK5M9lEJBP7MOycqHEYI/YaLY
5nWT2D+H7WECCR12P6M+LIhcmn4/WBYSVS1lfz/3ok3CtZAVPyI5SMSaF9U+
+LE/M8XJij+VNoVyeC4gPxnJ8AYTezY/Z0vqjAOq/j9pP9GfP/8iP4Y9/EYH
NrU/G4S8/ZHD8j+uisHweRN/P6djxlKkPRdAUiHUC793rj+22Hv9hmdFP6qs
qdXgCcY/13VWGYwXmD8QdNYbBdSAPxOr79v659A+LGwdDj7piD9psMevfzii
P2ncTg9EybA/zCMB5UVYnj9JZxXMSGRAP+pCmkhUBvM+vDhYIAg7vj/JelAa
qbYmP0/PtAYaZcE/VVV05UrPpz+gcfkv3wxePgh4FdoSGfU/llMK6k5yVj9a
JRYGGT+wP89NFeSH9Jo/pxeW8geWwT+5wemR/HffP6dQzUnVjKI/jHxiU3Ao
7j+AWTK735nEP5Jkegc=
"]}, ControlType ->
None}, {{$CellContext`baseInterestRate$$, 0.05,
"base interest rate"}, 0.01, 0.15, 0.01, ControlType ->
None}, {{$CellContext`interestRateVolatility$$, 0.02,
"interest rate volatility"}, 0.005, 0.03, 0.005, ControlType ->
None}, {{$CellContext`creditMarketHistory$$, CompressedData["
1:eJyVkWtQCwAAx6fOI+ZVLRduSFEnSaJ0uj8SxaJa20VctKlWp9pFybUeSrrD
oinbWrU17fZQrcweyHVFHtcNJy6nKa+LrUs1FcM8vvjud/f7/PvwW5GUGXt0
GoFAYP5RKPiLAuOE4IDTvfVotTlEhGl5OJETkG7dVgznleNPkk8Vg7PorkVG
ywWXGqwWfD4G6SubX8EKBp6M1/VpaUfQz/JPatVRQfhPIgZKY7bKgDuH/X3P
lZeBWH1KErqKh+MGk30ONx/OM3PbvKw5MFMiiRQ6F+EZLdLyMAEif57MrBsW
YvDbNTU94Apef9yYdTqejzQmi30oWIx7plGKi5MQ1tDsh7YeCcqcc8dclAI8
Ni7qb2BLkPAiZGcvRwgzp4tYaRbiLZmReW53FZicomd6cwMO7hru/nFcDNpA
WBOTIoat0EeVXiFDx+gyeh5XhZ52xyTPVAluaTpj+3hisBJqIh0C61FGyouz
GkRoiOr8Hu7DR0zeptTJrDrMG00r7eXz4Cc/kR0dJYCu6P1AxZ/OW447e99F
KfIs3nsYZ6Uof5hY+vy8DI5Da2aXLG/ClGcCq+BAI1Y/tX5yrVBC7kRaMitI
CcalGo8UZxW8mWV79eRmSCyXZgwZm5FywXW6vlCFlfYDTZupEmSOidwGFRKs
ve9jMbqLsMQG5f5NYkzm0/tdb1/F0rSP9WeuNMD/rh87dEwKLTeiPz9OjI0p
k+uK+dWY+8gYn/6uBG4jE9Rvh5ggVlbG3KwtgYhPs5JHk+ESwzo81Jf873vO
2AM3hxABqqYkFGK0Apfl4u2dEUqcCbTbaYFqDLsW/ZB9aEHLgi9B7t1qWBbL
zU3bNFhP6trim6tHe/T8EG/TTRTYjxZKjXq89HypHmzUYfvFhb9IvjqMkO6Y
Hm/VYjzIr0Px5joM5OyvPx310PLvl3gpdPDfu0O4XK2Fh3oer6r6BkYmsp5l
tLeBmdFIsiReR+XVWsN5vQaFrXIT47IWhtk9X9bpNOhKZVu7fdUYEDHoHhua
McEJX+Y+1YbfrCdu1Q==
"]}, 0.005, 0.03, 0.005, ControlType -> None}},
"Options" :> {
AutorunSequencing -> {1, 2}, ControllerLinking -> False,
LabelStyle -> {FontColor -> GrayLevel[0.28]}, AppearanceElements ->
None}, "DefaultOptions" :> {}],
ImageSizeCache->{459., {228., 233.}},
SingleEvaluation->True],
Deinitialization:>None,
DynamicModuleValues:>{},
Initialization:>({$CellContext`sequenceToGrid[
Pattern[$CellContext`dist,
Blank[]],
Pattern[$CellContext`\[Mu],
Blank[]],
Pattern[$CellContext`\[Sigma],
Blank[]],
Pattern[$CellContext`r,
Blank[]],
Pattern[$CellContext`v,
Blank[]]] := Grid[{{
Column[{"loss distribution", "parameters"},
Center], $CellContext`dist, SpanFromLeft}, {
SpanFromAbove, $CellContext`\[Mu], $CellContext`\[Sigma]}, {
Column[{"credit market", "parameters"},
Center], $CellContext`r, $CellContext`v}}, Frame -> All,
FrameStyle -> GrayLevel[0.28], Background -> {{
RGBColor[{0.88, 0.94, 0.95}], {None}}, {
RGBColor[{0.92, 0.96, 0.98}], {None}}},
Alignment -> {
Left, Center, {{1, 2} -> {Center, Center}, {{1, 3}, {1, 1}} -> {
Center, Center}}},
BaseStyle -> {
FontFamily -> "Arial", FontSize -> 11, FontColor ->
GrayLevel[0.28]}], $CellContext`a[GammaDistribution] =
InterpolatingFunction[{{0.1, 1.}, {0.1, 3.0000000000000004`}}, {
4, 7, 0, {10, 30}, {4, 4}, 0, 0, 0, 0, Automatic}, {{0.1, 0.2,
0.30000000000000004`, 0.4, 0.5, 0.6, 0.7000000000000001, 0.8, 0.9,
1.}, {0.1, 0.2, 0.30000000000000004`, 0.4, 0.5, 0.6,
0.7000000000000001, 0.8, 0.9, 1., 1.1, 1.2000000000000002`,
1.3000000000000003`, 1.4000000000000001`, 1.5000000000000002`, 1.6,
1.7000000000000002`, 1.8000000000000003`, 1.9000000000000001`, 2.,
2.1, 2.2, 2.3000000000000003`, 2.4000000000000004`,
2.5000000000000004`, 2.6, 2.7, 2.8000000000000003`,
2.9000000000000004`, 3.0000000000000004`}}, {
Developer`PackedArrayForm, CompressedData["
1:eJwV02O4EAYYBeCbXTe7273Ztpe9jFXLtrW2tLBlu5bdlpaXbdu2XXvv9zzv
OX/Pny+4aafqHcMEBARkCQ0XWmEJR3giEJFIRCYKUYlGdGIQk1gEEps4xCUe
8UlAQhKRmCQkJRnJSUEQKQkmhFSkJg1pSUd6MpCRTGQO3U1WspGdHOQkF7nJ
Q17ykZ8CFKQQhSlCUYpRnBL8QElKUZoylKUc5alARSpRmSpU5UeqUZ0a1KQW
talDXepRn59oQEMa8TONaUJTmtGcFrSkFa1pQ1va0Z4OdKQTnelCV7rRnR70
pBe96UNf+tGfXxjAr/zGQAYxmCEM5XeGMZwRjOQP/mQUoxnDWMYxnglMZBKT
mcJUpjGdGcxkFrOZw1zm8RfzWcBCFrGYJSxlGctZwUpWsZo1/M0/rGUd69nA
Rv5lE5vZwla2sZ0d/MdOdrGbPexlH/s5wEEOcZgjHOUYxznBSU5xmjOc5Rzn
ucBFLnGZK1zlGte5wU1ucZs73OUe93nAQx7xmCc85RnPecFLXvGaN7zlHe/5
wEc+8ZkvfOUb3wl9/jCEJRzhiUBEIhGZKEQlGtGJQUxiEUhs4hCXeMQnAQlJ
RGKSkJRkJCcFQaQkmBBSkZo0pCUd6clARjKRmf8BStGFbQ==
"], CompressedData["
1:eJxFVXtQ1GUUBUMEDTVCEyIQI1MhawoLQjo/QUe0mSxkiJTKtBoLG1w0QwRB
RtpxRFZkUzRSAwFRaHkFLG4sYLLgY9QkMUBYQUgeJRWMjzCD+9393D9gfo/v
nnvPOff8PNZGhXxibWVl5T32h36DeEi/i3A2qVxNKgPu07UO25x+WHoj9hie
ofuZ8Bv/Yp65Wwtxbi9u9F4dKQrehTh6byc0mT2RwwOJcKH349BWXRJ7YGEM
fOncZlw3HIoJ84nGf1Q/CsnLHC5rwzegnep8hoUu2ROXFX/KuB8j16ZydXT6
WqRR3TU40b+r9Ke7H3D9CHgFufZ3vroKHYQTjgY7ozlxaxheJ7xQBD6v9gze
thLthBvCuFMUMe9tuFKdNsyjeS4x7s88r4HrlDE/Ou4zH/HMi+jrKPeTiRbq
I4PPaXnefXhA5zU8bwrMzFsAzfs1tjN/Yt4kyWM+zbud+4mDN80bi3bmVcy7
hXXZzPNukjyPo7lmKXb0f5xiw3oLfW9gcnP2xoCJzXiM5+/sdjJkJpkgrFEH
N+bBgd6rwMyN65y1E0v5eRH00+0/n7f4JMx0Lk/yIp5nofzv+ZF5XUe4TibU
8Xe8otUHMYnqHZA8eVDddKRpH5T1RaYx3xqkn0sINsbvgYFwdqOLeRN9qjH/
8Rlzi/uSEcv8CdyXWN8pivDzCCx6C31vwod19yf8JvbzJdyi+o3SB0KHGtZ3
lAfjGO+V7Ocy9lUJ+0qHnaRvAe9FPvxJ31zJSw7pm4W97JtC0vew9M9c0vcQ
65sBE+m7n/G0WEz6pjPuPu7bTxH4M5SULt/ULl9bvr7Lfd3GHrrfgzHWDqw0
Mx/XoO9RLzlbc0XOfyQ0IwbRZyHq1MM1p/XdsNt1fK5G5oPwlR5RH4UE+TxX
jnKqU4qEDSum7qgq5npFCFSv0K21LcRhqnsCbjVBPqEvH+d+crHVki+Ek4XW
N77RDaR+D0fCO4r3XnhSf3TjYTzN/Ih5FvF8Hsq/rLO4tlbsyFd3YMm1DvLJ
73zdyTy3wZ59706+u8L7cBGl5LNzfM6EGPaB4KsWFeRnI55iHpLIz3quVyHz
wp33RPi5GCPsDw35uVDuTSf7xLI/XuTnHPbzMYGbEKyQrxPnKNEUWNMUGifR
TonQ1A3PiXiITXR/WOotnt/CE7u1O/JWd+F9eq8DRne/C819v0FF7/+KmS2D
99al/iLzf8FfBes9zef4fAPe9J48eLn0DKZTndOYbvYcOPVhLVZRPaPMyWqq
q4cq48sAVXkFRJ8/Iirb2jDesQyzCKcE+kDHAtsFxTJPnx3686v6pkK8Qrgn
Wae3FcseC91d+XqqIvbSRnHnvX6N+B6Scws+e/l7dBOptGdm9k8bWmmvrvE+
NaGD9ujR/GJ/z3M+N3I+18s8yKb9rZO5UED7Wy15EN+jKlyvFjkh8rmc87kM
S2h/Sxm3ROAiVOip+HBueYh5FSdl4J1Kt+R+e75vrXw7uhWD0fdFzilD0ud/
0Hu98Gwf66xb+j3Fb3mFrqAd4lwLJrDvBV4T1OuXjynM36dR/b/YolpTeZ7r
NbIvTZhNdc/AY+l3k9YfPC33IbHTlHFqfw00hPOIB4FXhSIH/7cmHK+EHe+H
0Cmc5/HlvJrN+joLHkZ11nCOidyx4vv3OGf+kXPnUa70cV71wIVypBPTOOcs
ulvyTuTVVVRw7om8usx9XcQiyqsLyOIcdKe8apB5aMkDSy6KvKplvBrOq2qZ
k/8DWSWguw==
"]}, {Automatic, Automatic}], $CellContext`a[LogNormalDistribution] = I\
nterpolatingFunction[{{0.1, 1.}, {0.1, 3.0000000000000004`}}, {
4, 7, 0, {10, 30}, {4, 4}, 0, 0, 0, 0, Automatic}, {{0.1, 0.2,
0.30000000000000004`, 0.4, 0.5, 0.6, 0.7000000000000001, 0.8, 0.9,
1.}, {0.1, 0.2, 0.30000000000000004`, 0.4, 0.5, 0.6,
0.7000000000000001, 0.8, 0.9, 1., 1.1, 1.2000000000000002`,
1.3000000000000003`, 1.4000000000000001`, 1.5000000000000002`, 1.6,
1.7000000000000002`, 1.8000000000000003`, 1.9000000000000001`, 2.,
2.1, 2.2, 2.3000000000000003`, 2.4000000000000004`,
2.5000000000000004`, 2.6, 2.7, 2.8000000000000003`,
2.9000000000000004`, 3.0000000000000004`}}, {
Developer`PackedArrayForm, CompressedData["
1:eJwV02O4EAYYBeCbXTe7273Ztpe9jFXLtrW2tLBlu5bdlpaXbdu2XXvv9zzv
OX/Pny+4aafqHcMEBARkCQ0XWmEJR3giEJFIRCYKUYlGdGIQk1gEEps4xCUe
8UlAQhKRmCQkJRnJSUEQKQkmhFSkJg1pSUd6MpCRTGQO3U1WspGdHOQkF7nJ
Q17ykZ8CFKQQhSlCUYpRnBL8QElKUZoylKUc5alARSpRmSpU5UeqUZ0a1KQW
talDXepRn59oQEMa8TONaUJTmtGcFrSkFa1pQ1va0Z4OdKQTnelCV7rRnR70
pBe96UNf+tGfXxjAr/zGQAYxmCEM5XeGMZwRjOQP/mQUoxnDWMYxnglMZBKT
mcJUpjGdGcxkFrOZw1zm8RfzWcBCFrGYJSxlGctZwUpWsZo1/M0/rGUd69nA
Rv5lE5vZwla2sZ0d/MdOdrGbPexlH/s5wEEOcZgjHOUYxznBSU5xmjOc5Rzn
ucBFLnGZK1zlGte5wU1ucZs73OUe93nAQx7xmCc85RnPecFLXvGaN7zlHe/5
wEc+8ZkvfOUb3wl9/jCEJRzhiUBEIhGZKEQlGtGJQUxiEUhs4hCXeMQnAQlJ
RGKSkJRkJCcFQaQkmBBSkZo0pCUd6clARjKRmf8BStGFbQ==
"], CompressedData["
1:eJw1lfk/FAgfx2cM48rNUCopKYrFGmcSm1qqDbuKQsrZIzeVI2c66HLl3IRU
ypQjW5ae77cUSkmUkhEjVzGYGWMMYzxe+3r2l+8f8P583p+v5rEQZ18igUDY
unx+L8pWjzEUw2NPqsyf90rgzaWr+Wkl0tiZXVM0ijIYe0zPUBAhhzHux1eW
BcvjyeqX6W8lFHAn3Nq0/qoCWvD1jlDIilh2PoD1KlQRDc7+npL0XhHre9v2
T+ko4cPiXVZesUoY2Lia/blZCT/LDVnoyChjFpvoyf9NGV0TGhK6LinjRGip
n26LMkIOM9JTqIxuP897PTNSwdVOKpL5PiqoJ7KnRDNbBReudPhdfaaCDuZf
eHJMFZT3Jvq1USj4acNRpeHtFGxSdfOL86XgEa9hd1oaBd+q7ydnPKBgds/R
Mav3FOw28Y+0ubgAD9UrH3fuWYJdwg4nxVwiftNhRxs6klDPVKO08o0oaoW9
7+GrkDHygH2olok4HiDP0A9QJXBTr0Fh90pJJHwIDgsck0TRY7p/Pbslhad1
lSPqnKSxvEbw6AJLGsM+vDkodW4FDiRu6a2Wl0G56bSrtZkyuKHSxV9ORhaF
3n8KCxNl0bHNhSk7KYuvExU3kA7I4VHtwfeLT+SQvS1yQ720PJro7o0ZNJPH
2OyJKW0feaQH6TjQLstjqKt/X26dPNZTuUZidHncGmWVKU9UQHpWTXinlgLm
tor2eu1WwC38l1Y71GfAz8CWlmk8C0XUuEbJd3Pwq6EwuiNkAaRqXpHShxeh
z+SQ4I0CAV3z2smVKkRkJelGUokiqB5v7p7zSQTl70jOPC4k4dPnscbrHUVx
r5L7EfasKFprXX8ykSGGZ6TbjqatJyNnoJtDvkdGWpcyJ1BHHKMSSZoFJeIY
bBrHdVSSwEgvwnXjBAl04Wfmdw5LoD/D+Ev5bknsvjZxfmW5JC75LJWnCyVR
bJGtsP8PKRx27N5Kuy2FM9Qe81GuFHJDxZJMbaVxx9lam850aSwu7j0z0imN
zy7HlN9QXYGXAxknMx0mgb7yx4xG+DSENXmHaViy4YlQ36zaeAYKBkXB1mAW
cvq1tEiqc2B28cZNkQE+/NsLy/Yd6f1Ki+Dt9OyFabIQUk01QwTdS1AxqLjq
eBoBnQa7qpU0iMhrSavKukfEW7uprn16Ith7irqmuUIEE3+0bpTQIGHl3vBe
uysk9BywMJOZI2GKXVX1F3dRJFMin6o/FcULXYGzBivFMLrrMTMkTAznCl1q
tZrFMO5gjmaWKhk3a23n8nzJeNO38++L1WTk2snmRc+TMYuRxuPsEEdf9gl1
zVRx3OCyNDTWPgKt6g23Da6MQZRlhuKTleOw8fS2gotqkxBx39K6pnQa6P6P
PFjmbOANX6Dmv+RATfnEX/nWXBg/FPowr3wWMr9FxNryeCATn0nbS+WD/112
36jXPBj9peYWHrsA1wobIvefE4BsuJFlV/IiWNCnzMzDhTCvn7y7xGUJftFc
+1RclYDxHh1tJvEENGpvuNk8QMBEuyEdFWsico1W3ziZT0SdwcIck2ki/pQo
IZn/iwh+KzSh9maJ4DudYB9jhgi6ftAu7t5CQqYJbddUBAlHU8yK7tST8DC7
12TjIglbvEsHx1oHIOBJRpyVxCDk+kdyaD++wVfttMODFiOQcvZkzd+tY2D/
T7/HIcpLLrlKdRKclZPmH7hOQzJ/ZrNFAQuUc/aePd7Ohr4Yh5S4GQ7UOZpG
n17BBfm+whfvKbPwt9K6KybKPHAOzHgVLDYH4yOfAuzH5+B+CvV2RjMfrPu5
ZpJ58yBdpJfg67UAWw2vB/y2TgD0imFfz88CSA2I+b7+4iJEm0b+vOZnIZRJ
Wlo3dQth4XtFfWLkEjTlfJo7TCZgmdsXD8Z+AoqeWVHKv07AE8VV/q97lzk6
qxmfXEvEOztbHX6J/gQFrTdXFBzogcMSDgVrzelQoFkvcflrP/wnV5gRIjII
a09NVqtYDMGfjUwFUtII+M313PBY5vCC1kMKII/D/fOxJtpUJlCyAw1NnabA
OtM1MLZyGkj6LTumy1ngTfnppUIOGwxTQzr0YjhgkK3JrHJZ9qVok6HqZi4w
Ux4UDbK4MDBrvzqndhZoW+jjlUE8GLvFPFu6bg7U9ZvTR98sc0qu9xwJ58O4
HENKRGke7OIi4q/T5qE98dnXOdsF4MiIsk51LcC+d0bp7kcEEO+lRv4xIoB8
Rmyl538WYXvMepnFy2/Bwrt96oZZB+SEElN6z3RCLqf2Iz/wI2y097nj/PEz
rC8oaOFdpYMOudnj+rYBSPjH80HYmpx0dsx8COzS5RJsjUYgQOXwq1aNMbBM
3W/ftPQdLDonZCo6xiH+s63t8wwmFM4yBN9sp6Dv/3sRFXb6V01LFthVN0n/
V8ACKUkf418fsyHQeKcdJZADrqb3XiSozcCVVbemvsAM0D2u7I49yoVDd+8+
qlrkgtvLdzIt2bNQeUd3SGwTD1q9OmOrHvGAF57HENs+B/sYS4o2TXPgHM40
yN/Jh9JLVuv4aY1Qus7axSgTQbS6Re2BxQtIeig5Qxd7BRr2DbdyatshpO6P
1zeTO+HGYlT7U8ZHGEljOu3z6gG719vEz0zQofL0eef4ZQ4NNm7UNUIGJLiX
Ctsef4NsQm3iIf9h0L+wg3FCehTmPcwVbcrGoHBrm1ey/g+4HbUvaDNtHI5+
lBV4ajDhaqhtRGTqJKwdstv7tn8KbutNZwblTi97oGyVbs4C87Zra890s6CH
cDcoMZgNOSVhq94TOWCnQ9OuuMaBf//NXTeTmLaSGUg5WOdwRosLa/b4BaWW
ceGryes33V6RcMKvDBuVs8FAsNT5VO42oKz49qClGlD/J9dGkCe7//aB1gQe
msd3XUp9BV/mJIJWVbyDOx0Xsy8IOoFjPi+01e+GpHNinwyXOfy5pe+0dTod
ZOuU9jjf6wfZTNUTU+4MqP0acPBl7yCEK/QHTzsOQQlUWEk3DsNo7MiRydWj
8Jh4X6Y4Ygyol5k8G/wOh21UYhVI47Dlua77gW0ToGaRE3bsBBMYlPHGS1mT
4Pi8JE+/ZgrM8wt7HH2mgad1yql4fBry4rdz9UJY0CB37q72FAsoLnUN1YFs
+B9seQfW
"]}, {Automatic, Automatic}], $CellContext`a[WeibullDistribution] =
InterpolatingFunction[{{0.1, 1.}, {0.1, 3.0000000000000004`}}, {
4, 7, 0, {10, 30}, {4, 4}, 0, 0, 0, 0, Automatic}, {{0.1, 0.2,
0.30000000000000004`, 0.4, 0.5, 0.6, 0.7000000000000001, 0.8, 0.9,
1.}, {0.1, 0.2, 0.30000000000000004`, 0.4, 0.5, 0.6,
0.7000000000000001, 0.8, 0.9, 1., 1.1, 1.2000000000000002`,
1.3000000000000003`, 1.4000000000000001`, 1.5000000000000002`, 1.6,
1.7000000000000002`, 1.8000000000000003`, 1.9000000000000001`, 2.,
2.1, 2.2, 2.3000000000000003`, 2.4000000000000004`,
2.5000000000000004`, 2.6, 2.7, 2.8000000000000003`,
2.9000000000000004`, 3.0000000000000004`}}, {
Developer`PackedArrayForm, CompressedData["
1:eJwV02O4EAYYBeCbXTe7273Ztpe9jFXLtrW2tLBlu5bdlpaXbdu2XXvv9zzv
OX/Pny+4aafqHcMEBARkCQ0XWmEJR3giEJFIRCYKUYlGdGIQk1gEEps4xCUe
8UlAQhKRmCQkJRnJSUEQKQkmhFSkJg1pSUd6MpCRTGQO3U1WspGdHOQkF7nJ
Q17ykZ8CFKQQhSlCUYpRnBL8QElKUZoylKUc5alARSpRmSpU5UeqUZ0a1KQW
talDXepRn59oQEMa8TONaUJTmtGcFrSkFa1pQ1va0Z4OdKQTnelCV7rRnR70
pBe96UNf+tGfXxjAr/zGQAYxmCEM5XeGMZwRjOQP/mQUoxnDWMYxnglMZBKT
mcJUpjGdGcxkFrOZw1zm8RfzWcBCFrGYJSxlGctZwUpWsZo1/M0/rGUd69nA
Rv5lE5vZwla2sZ0d/MdOdrGbPexlH/s5wEEOcZgjHOUYxznBSU5xmjOc5Rzn
ucBFLnGZK1zlGte5wU1ucZs73OUe93nAQx7xmCc85RnPecFLXvGaN7zlHe/5
wEc+8ZkvfOUb3wl9/jCEJRzhiUBEIhGZKEQlGtGJQUxiEUhs4hCXeMQnAQlJ
RGKSkJRkJCcFQaQkmBBSkZo0pCUd6clARjKRmf8BStGFbQ==
"], CompressedData["
1:eJxFlns8lIkax11PsjTrMhEd5ZaKmXxO5c7zrqWLFZLbtJFjw9KRregkXXbr
OMuuXHdZpBE6Ga1aqVh10MVtGmYYY2ZcJ4xBZKJFbp2zn55m3j/e/3/f5/v7
va9xWKxvuKKCgoLV/19KCn8+UugCH+bj4JcQuKvOJOJQD6THPAwf9+mGyXt0
huIUF9ZzbrFDfTrB7Niq5IFpB+R8SzX73YkDhOob5Uo1NmywCSXXCNuA6+Y9
aNTLgoQqr6d7FFlAnrr7ytDtBRhnOVI5hUwwoga6b1Bnws4vdZxqklrhYoBS
suW6Vrgi1DRMvNECYWsz23VdWuCI7UB01VAzvKWEP/FMawaay5l8FaIZHCb1
FEznm2CK5D2pUdUEIV8qVbqcboKIhLqSvbZN8KrqcG3TaiOQyVr9ka2NYCUd
evoypxGez/5g9zaiEVb87P+awVYglt//+UyDQsN247JxMQgwP1Vk1a5Q2A9B
yIFtUxJz8i8CuIE8cp1bVY6udME0cjk5HeXUpsEFTeQjeLRQ6Hu3AwyRU/h0
lLcLgwO5yIuRtCqOrWaDM3KTXJwjuUS3gx7yezm+p2Wnv5xj4A7Jv6yiWXAO
eTIOuJ69Qn8BOsjV4MDf7SJeM8EE+ZJWaUTvQSYEIedpk6WY6zHqRE6Lp6Fb
4gK8x9x+9mrVlINjcCElO3ib5ogs/4yXR/MWzUHQ3X/2/r2QPpkP+ulx0x4P
BbAleSaPFMmHPOSRWc0VisJ58Cw17YzTtS6QIhfzmnNdGoe4UCs+GHyJ2Snz
J7Xt3ldHhzogverwqdKLHTKfFm3FEaEcDqifXAi6dYUD2cjL1Wy2gPUHG1pP
+J7dncgGU+TmlzNwM7KwHeqOcUrpdu2giPzU2srG7C21iY93DqPvS8xM/wMU
0fN7rMCCctY4qOLd42wUPcLdh6Eb898iGZQzewdhB3rwbZx/7GZ2r8wH7RLe
VYIsBB568eP9ESp7Ix+KkYdKnEcxtZAHOeiJUX3BLOWE3JfzbQbUpn9y4Xv0
5s7twcWH5Z2gh3zK2ZnJguUOmUe9X3v/bhIp51RYULsubYQDEeiVQ1NGaYq1
HiENDxHdyFAlLF8UJFglLEGjdt5iq/FbUMDcdyM6ydVtEzB8OXr+0R4JVHBS
Ui3qRkA9LK8gmz8EfMxPy/cv0bAWwWPG0jvL0wMgNVs+UC3og+3b9PXDLsg5
zEXb0h74CCGf12DBjhHAhUWrxtVSPqRYxGv1vOmGIuSx0TF1bXQ9DzxYRJSJ
Iw9UdjSHuj7tAlv6urEvDnXJ9mXdPhs+LY0LjSOFunE2XGjVD2VkjnSCRltR
OOmXTiAjH/UiwXKry0aiD71exjvnot+bWsOrHffPynIrnKOrw/evwB99V8a7
J6L3SnaOrE1ZQ8DD/PsNncbVQkQgxR5YoQcm2AfRzuAt+ft6Zb3gx1I8v0kQ
gh72owu9MMOeTJTyagW8bqAjjxO/JqpUdvNkvclGT55gf/jZSwYVn8l7ZJxr
r7uVsZmwj8xYtT5CImjshgmTeWXC7XDA89GVZXh+wDTMrmYOqO+HpVtrZ2AJ
+736omz3P3QmYa3WddF603FoqbjDd+0fBcljI8Zekhg6jzdqef0yDL9ZZhk6
h8nvH6I6vNxzSQQMcXn0374bhPGUvEPKuwag3pNWYEjqh8Or1nMXP+kDivCL
sfumvUBDDszanxzW5wrB8xrtsfSVAJjLxMMSbwEsEeTmzxv4wBl3ULJ14oN2
rIBl9lTOQ3lt9rZUCQ/CQCqxTeIB62ZTdN4uU2KF9aHHEC+N20ZZQ6j6f7iz
HrXSvMdtEUKx11dsvnlQ5Dcj27UJnSAdje8mZT3fPfsuwvKWBJTw7ssZ2cXd
CSNwCnuvRSvLsYchWf95Tdc+b8oTQRnugHFSSWLb7QGwRg8WUiuyrMr74DLu
AiXL5PwZNbkPV0M9Y4orhEDBnTC3bviqNFkAnehFPKNe7dJVPvyAu3FqQ/Fp
yhNzwuHf+xSP/6pLiNHroeQCqLRUJp5Rj9s1j61APvodln0si/fft0CKlFj2
qM2AMnpeZH7My0g4CZF3mlfOBU2AL/ruLgrIflQ6CkFfG/hzneXeiwNfWyWt
GYZPyXSty2by/HvFDufd74jgwujGSmdtkex7sFcj3o2uNQDpdy97iSn9sBn7
UDNw+73vjV4Ibv9PfNJsDwQgB5/f5vWO1AshjZ6Y+omNEBbSPvQjVeg6lea1
ldiDuxXV5be//YEmMY37tYp93o47dmmUTITazcMz3DNJSAfNrP0NfPxvuZlv
EXnceArKcN8Cbr6L+mxoDAZx5z72/ePezemfjfqpdhjUcPd01xz9+TRJ7v+n
um3zQ3Ui2Q7ymBZsbvCgbA910IPXuIvu1/Olm8z6YCvuY8eIivLkUI9sJ/8H
5hmfhw==
"]}, {Automatic, Automatic}], $CellContext`b[GammaDistribution] =
InterpolatingFunction[{{0.1, 1.}, {0.1, 3.0000000000000004`}}, {
4, 7, 0, {10, 30}, {4, 4}, 0, 0, 0, 0, Automatic}, {{0.1, 0.2,
0.30000000000000004`, 0.4, 0.5, 0.6, 0.7000000000000001, 0.8, 0.9,
1.}, {0.1, 0.2, 0.30000000000000004`, 0.4, 0.5, 0.6,
0.7000000000000001, 0.8, 0.9, 1., 1.1, 1.2000000000000002`,
1.3000000000000003`, 1.4000000000000001`, 1.5000000000000002`, 1.6,
1.7000000000000002`, 1.8000000000000003`, 1.9000000000000001`, 2.,
2.1, 2.2, 2.3000000000000003`, 2.4000000000000004`,
2.5000000000000004`, 2.6, 2.7, 2.8000000000000003`,
2.9000000000000004`, 3.0000000000000004`}}, {
Developer`PackedArrayForm, CompressedData["
1:eJwV02O4EAYYBeCbXTe7273Ztpe9jFXLtrW2tLBlu5bdlpaXbdu2XXvv9zzv
OX/Pny+4aafqHcMEBARkCQ0XWmEJR3giEJFIRCYKUYlGdGIQk1gEEps4xCUe
8UlAQhKRmCQkJRnJSUEQKQkmhFSkJg1pSUd6MpCRTGQO3U1WspGdHOQkF7nJ
Q17ykZ8CFKQQhSlCUYpRnBL8QElKUZoylKUc5alARSpRmSpU5UeqUZ0a1KQW
talDXepRn59oQEMa8TONaUJTmtGcFrSkFa1pQ1va0Z4OdKQTnelCV7rRnR70
pBe96UNf+tGfXxjAr/zGQAYxmCEM5XeGMZwRjOQP/mQUoxnDWMYxnglMZBKT
mcJUpjGdGcxkFrOZw1zm8RfzWcBCFrGYJSxlGctZwUpWsZo1/M0/rGUd69nA
Rv5lE5vZwla2sZ0d/MdOdrGbPexlH/s5wEEOcZgjHOUYxznBSU5xmjOc5Rzn
ucBFLnGZK1zlGte5wU1ucZs73OUe93nAQx7xmCc85RnPecFLXvGaN7zlHe/5
wEc+8ZkvfOUb3wl9/jCEJRzhiUBEIhGZKEQlGtGJQUxiEUhs4hCXeMQnAQlJ
RGKSkJRkJCcFQaQkmBBSkZo0pCUd6clARjKRmf8BStGFbQ==
"], CompressedData["
1:eJw9VX1M1WUUvghcBK504cLlGy5coAuCXLnKgKzzSGituYU4XRtUrCXZplNj
9ofVYpiVa661tRp9bJauSV+zrSG2/gh1MTdIWRSWbclwNFGXhlRqk/id8/B7
x3jv+55znvOe933O8yt5amfb1jiPx1O98O+9PmeckPd1/kXOjTjjqryr61vi
0ZGAUd33wfwCsLhcxHSEYH5lWK3rCAynGs90LYzpKONiWOK49dTjA103Ypva
1zAOlsfXTLwWWNr1zPMw6p2p+xHib0C844ZHsVVxWmGwbTzfJjzr7Hs3M+8W
nqOf9Z6RHxTnN3lH15dZ703R7ZH/xHDiGZeMVXoOP+7OOyPAc+XgrPoXWL7p
EPOHmbeC9Vay3mriRKH5fXXEi7HeetobWG8T738N4rReQZfiwPI0NvN8D7Le
dXYvPevhT3fGR5Km85DYeX+UVF1PytFPnTEjK3V/Vkp13BY1p8exjkT0q18K
ytTuZ90BHHjdGUHu50HLmC+ExZdgXYszwsQp53ki+EzxqowfXTUIa3zU5o9X
kg8xbNm8MH5ahdc0T73dz4YG2DmboNtLeS+eB+z9+/r4vifI5xGX3/a+l+Qk
eW7us3znW7wHDxZ5b+dYSr75+H5+tw+03JeDXOfSXuD2hfG5lPcS5rqC9oi9
c3eV2y+J+r61fN8o37eO/IkZvne120cvZH750OTet+VFnb8W38ThXfenDMtL
uh4Xu5eLkqr7f8iTb56ci3T8Sf+bMrNxsGj/lcU+9+AJtcfDcJJgcancv8fy
ejKwV+MzEdp/ZQEhG9cUJxdTaijg/YXgRE8cLmF8GFUdzo9y4t5LvEqk6Ho5
7TXoVP9abHJgx6J83zpkKH/eEpu/Eu2P2CnydUw+V179Sp5PifFyhv43yIM5
+t2m3WN9FovHQSWUl3xOQYLmTWPedCidWwL4UHGyENDtHBhenulQVyH5HCKf
S9jPYTymfC5j31SQzxH6V+EN5XM1612B4vG1heNrD0qhzl/IxqQ9rUl7vpMi
XY/K4I4LAzsu/Cytun9RthlxaL8mTUf3Lfz9JQPq97f06sYdaVN/D5KdqTUe
T2ucFzsdt4FkWL5luE/j/WjQOQP+mUNpM4cyYXmD5HEu9iluPtStqQh2zhCO
q18JdNkaRrMCl7HvK6DbSRHs0ryV1IkD7Mt+6vO3XJ8hT8flNHXb+mKK82Wp
0/Ncd3Xc3vVfOUs9t/70sF/j7Z57vK6+m93n6rz1awb5nGk67wtSF3Js7s6j
PhcYn1HM7x6/A42l7vdA973lzFuBnO1Dwe1Dr0q2zp+4uhXU9ffyXMHw7oLh
MVe/TqlhkvZpGaWO7Va/G1J7vrfmfO+cq2ffdKYOdKbeZVycfRcWdM3yeeFt
P5bYfiyZ3y8fBtTfD8NL57kDWKG4WYjqnO3q3fPql49BjStydW9I85UQv5R9
XgbTnVfEdOuILNO+Py6mJ6f5bufE9GCCevU7/S+J6czid/q6tKt9lrr3D/Hu
iMpIxzz1bwnzJlCvknBVcZKpVz6+rx9HVK/S8bjGB1CpQFnUw2zeXy71Kx/L
1V5I/2LqVYj1luJ/oLuWZQ==
"]}, {Automatic, Automatic}], $CellContext`b[LogNormalDistribution] =
InterpolatingFunction[{{0.1, 1.}, {0.1, 3.0000000000000004`}}, {
4, 7, 0, {10, 30}, {4, 4}, 0, 0, 0, 0, Automatic}, {{0.1, 0.2,
0.30000000000000004`, 0.4, 0.5, 0.6, 0.7000000000000001, 0.8, 0.9,
1.}, {0.1, 0.2, 0.30000000000000004`, 0.4, 0.5, 0.6,
0.7000000000000001, 0.8, 0.9, 1., 1.1, 1.2000000000000002`,
1.3000000000000003`, 1.4000000000000001`, 1.5000000000000002`, 1.6,
1.7000000000000002`, 1.8000000000000003`, 1.9000000000000001`, 2.,
2.1, 2.2, 2.3000000000000003`, 2.4000000000000004`,
2.5000000000000004`, 2.6, 2.7, 2.8000000000000003`,
2.9000000000000004`, 3.0000000000000004`}}, {
Developer`PackedArrayForm, CompressedData["
1:eJwV02O4EAYYBeCbXTe7273Ztpe9jFXLtrW2tLBlu5bdlpaXbdu2XXvv9zzv
OX/Pny+4aafqHcMEBARkCQ0XWmEJR3giEJFIRCYKUYlGdGIQk1gEEps4xCUe
8UlAQhKRmCQkJRnJSUEQKQkmhFSkJg1pSUd6MpCRTGQO3U1WspGdHOQkF7nJ
Q17ykZ8CFKQQhSlCUYpRnBL8QElKUZoylKUc5alARSpRmSpU5UeqUZ0a1KQW
talDXepRn59oQEMa8TONaUJTmtGcFrSkFa1pQ1va0Z4OdKQTnelCV7rRnR70
pBe96UNf+tGfXxjAr/zGQAYxmCEM5XeGMZwRjOQP/mQUoxnDWMYxnglMZBKT
mcJUpjGdGcxkFrOZw1zm8RfzWcBCFrGYJSxlGctZwUpWsZo1/M0/rGUd69nA
Rv5lE5vZwla2sZ0d/MdOdrGbPexlH/s5wEEOcZgjHOUYxznBSU5xmjOc5Rzn
ucBFLnGZK1zlGte5wU1ucZs73OUe93nAQx7xmCc85RnPecFLXvGaN7zlHe/5
wEc+8ZkvfOUb3wl9/jCEJRzhiUBEIhGZKEQlGtGJQUxiEUhs4hCXeMQnAQlJ
RGKSkJRkJCcFQaQkmBBSkZo0pCUd6clARjKRmf8BStGFbQ==
"], CompressedData["
1:eJxFlX0g1Hccx8/dxTxcKWWxEVZJkYdklfT5Wtd0TlsqSxk9yFoSdmRTSysU
zmxEiaYmaU7IUtiR9SALWcRcqrkkD3M4zt25R+uP7/1+/3z/f78+r/f7a7s/
aluYHoVCcXz3+DzZl8kq+g+qVw4kBvhNQX5QROk+n2mwmUg1ihlTwjH31KNf
vlZDGCfuRuhBLRQftrM7dG0GSlpHOQGBFHToVo7zqhYKei8Gza9w1kPOQczj
HSl6iFOX0dEq0ENZzdFuXrZUtNW+OG1PKBUZ5Qu5DleoqCD4445gARXFWv+r
zjWhoWdPLV7u9qKhn4Yr9BmHaYjaZFdqcJ6GhAz3pTl3aegMa6R2qp+Gtrob
X/3SkI4KXdqrVSvoyKrNrVzpR0eMVM9FJyLo6OsR5s7CNDoKU1/WJl+no9G/
Aq6iB3S0Qpy8fOgVHXnwE/d87/kvbMa5TxgK774ImYA7OL9T+qGtRskyyMMc
GjkZjzbUKAge8270F7VNqwgu25YHnnKq0MBXmA9r3GHnM8YMXMecxHVzrT0W
UpCO165I68zWcxQUjrmtFfyYoj9D8nvQJvg7KZjk6Nl7x1xQSfJs58TkCDUk
15fyZ/sMNlLR55hvhdD64P7TVGSIOWd/mzDP9lEnmIrNs68ffEPkdtLwb1k6
iqEuvUm6ijNJ3H9NXH21QbcUPk2oiLRYKid8qM/pjPqDqQCL+SdqP1uiJHgU
CwuH3YpUcAToonKWGuIxF/PFuR2uRzRwLjd9R+OYhvAnKUDibSPQQln87IDX
3jOETzmODpHlehRUNWeF4ZKVJK+em3Nvxv5AQQsLqIzKYpIbe/EcqfUYBRV5
3bTPnqNH8PvAu61+WdLf4IbvLDaef75o71siN63lRsoFo3Hi7iHHTbk/T0xC
Dc5/I+mTiIvHpIQHa5w+ObmJQ3Io6+JJd7ynILwoPV284JddJI9ZEzYQ9p2K
8CTkAXfJ02g14Uvz5KeLvNka8Mfe3KP3MmsYWjiA+fy8XK33a50WNmOP/tl0
p8E/iPRp8ZPdt4NFpFe3E01CObseg9ji12H1dQEEMlo/yLr7GjK1plFPTw0Q
uf/w7WhWrxmD0vBIxQBPDN2OO/jJBpNgnZgYqFonIfIn5v+e5+0tBYFPyAs/
axmUGNBKFg3KYFnSOl55gRwuYQ4exs8fu76ZhsGpOxV/xihA5DQZF65UQBx/
T/z275RghXkkQ8Pz/GAVZIcEcU8/UsGqKfbUfQc1zDrA2Nx/Vg3HMRcz50xh
locG+NTWvL6zGlgT3eRxqUsDYN7KMrDREv3KeHOxSu7cCDnY67X4zjq/j6oX
LJOvHwTdriWMW4ZblYzCSuy77u712Pv7V4ti68MlUIXzDxlbRLlbSmEt7sFK
7IGuD70/cFoa+aQP8/j6LibN03AX90Pnha4nV7Zv5J9NV4It5rHk5Tc9KWwV
0Rsz7EkU7k+NizLN6oIaTmIuW5LjLZJd78OHxdz9v4y2Q5jXEy+hTw/QLXmV
l6mvISHeLa2J2w/N69kz4w1k7saMA5XeaBQKHA6IhvPHwTbmt86UXjHMu8Xd
FiGYgMJo1o6H/EkIdA8+6ptO5t8t64K3milo4vWklxdKIeVVaPPS9TLI/fNq
x48tMhjSzE6R+cuBsldr8NlTObGT91r7qP3V08BnwnS0nQI6GRLPzLMK0I+/
b1U/qADJdt5IyEYlSFq6RJ15ZF/8r5xfnbRBBdJYu2w2VwUpzPZLTGEDWOEe
D36xZcbo425wx3f26PCtcN7bBxrc61LzDRNVNkNEbsirjfhGLAIq7jmcvv2I
/j1593TXIpGxyyQE497P1q72tb8mIfbvaOmZ6MihKSjDO2C606+rmyYj9qAs
m/WVVEvuQl1tOzurl+QwHMT6aDlvGsrxTuyy2TwE+0kvzHhc3iUjJbEbju+b
P4wJqoP8I0kyd8tWOIe9lqW99XBzfAFs+2OT1blCwu9N+nmeGdQB6Jsb1W51
mMzdPxLHKqkUgVuoNN7kwhjhu8lHZk2BajH41/DlffUTxN73njzysMBSAisK
mANba8j+X8heOJLb/Y5Dsb+RaLeU+A8u7rUq+8lPBomjJq4L6mTgg/twKHfp
qTlcOcR62a0LGSF7oZFaH4+4PA0R3oWGjyXv/MD9MPSd9WpLai3w8W79dkY/
vvJxB4zj/dL9z1/gHWPnBVctXt1P7FkD32X1h8VDwMK5s86ZnlEniKAO71v+
Xwu2mXSNQxneuQR893/w3vk/2Nk1co3cPeH79smpTWT+PMPzx4yayR3c8Dnb
LOl3KTzHe6jzQLeLje1crwGmnNjHHqlr270pksP/Vsmnuw==
"]}, {Automatic, Automatic}], $CellContext`b[WeibullDistribution] =
InterpolatingFunction[{{0.1, 1.}, {0.1, 3.0000000000000004`}}, {
4, 7, 0, {10, 30}, {4, 4}, 0, 0, 0, 0, Automatic}, {{0.1, 0.2,
0.30000000000000004`, 0.4, 0.5, 0.6, 0.7000000000000001, 0.8, 0.9,
1.}, {0.1, 0.2, 0.30000000000000004`, 0.4, 0.5, 0.6,
0.7000000000000001, 0.8, 0.9, 1., 1.1, 1.2000000000000002`,
1.3000000000000003`, 1.4000000000000001`, 1.5000000000000002`, 1.6,
1.7000000000000002`, 1.8000000000000003`, 1.9000000000000001`, 2.,
2.1, 2.2, 2.3000000000000003`, 2.4000000000000004`,
2.5000000000000004`, 2.6, 2.7, 2.8000000000000003`,
2.9000000000000004`, 3.0000000000000004`}}, {
Developer`PackedArrayForm, CompressedData["
1:eJwV02O4EAYYBeCbXTe7273Ztpe9jFXLtrW2tLBlu5bdlpaXbdu2XXvv9zzv
OX/Pny+4aafqHcMEBARkCQ0XWmEJR3giEJFIRCYKUYlGdGIQk1gEEps4xCUe
8UlAQhKRmCQkJRnJSUEQKQkmhFSkJg1pSUd6MpCRTGQO3U1WspGdHOQkF7nJ
Q17ykZ8CFKQQhSlCUYpRnBL8QElKUZoylKUc5alARSpRmSpU5UeqUZ0a1KQW
talDXepRn59oQEMa8TONaUJTmtGcFrSkFa1pQ1va0Z4OdKQTnelCV7rRnR70
pBe96UNf+tGfXxjAr/zGQAYxmCEM5XeGMZwRjOQP/mQUoxnDWMYxnglMZBKT
mcJUpjGdGcxkFrOZw1zm8RfzWcBCFrGYJSxlGctZwUpWsZo1/M0/rGUd69nA
Rv5lE5vZwla2sZ0d/MdOdrGbPexlH/s5wEEOcZgjHOUYxznBSU5xmjOc5Rzn
ucBFLnGZK1zlGte5wU1ucZs73OUe93nAQx7xmCc85RnPecFLXvGaN7zlHe/5
wEc+8ZkvfOUb3wl9/jCEJRzhiUBEIhGZKEQlGtGJQUxiEUhs4hCXeMQnAQlJ
RGKSkJRkJCcFQaQkmBBSkZo0pCUd6clARjKRmf8BStGFbQ==
"], CompressedData["
1:eJwtlXk41Hsfhi1JkvWtKMpSB5WKpFOpnqhMSYqryJs2u2Q3lmOJtKEkcbx2
IrLGoUKRfQkxjL2RnTHCSIs68eZ7zeeP+f/3fO/7HjlTBwMLbi4uLuXfP7FR
S1cEcwN+daZLNhaCCtYrxybiZ6a+1HvJcMQXH7fVXAhEkeY9un6JP+hM7k/u
xzzRta3Ne1eSMyL/0MiKxXWs8om07WFZ4FPOFdVNxlch4CnXOMm6gCOFWf6s
BkOkTFdRZLsNkEfxOpcfcBoyKmNHD8fogFuJqiuXro0y3rGpIZcjUDFKDnCi
HcY6kec+7KMHQbdUpz2P34dA77sSi8F7sCtfb4Y9owbRhdZnL16pwoXlFbcp
ficesbTMEw2UYeawj/XBbQu+JGceXDGvgOaAvB1x7zbj1qtntLyP8oi4oS9g
P9aI/5HvroebnKyYbUMlbMn3l8CdqfjY7/MLLJIdcqHDL6PTHJ2OXVlLe6SA
9d1P+OTKRDwju0TBvvdMLPV8BB6SfR5hqC4qTLzpAeLIToHIcb4ndiTuNnrJ
XjchpBiV6LHNDw/Ibt6IsdOKCqJ5YAXZj4qU7XbjglQXTJEdnSAO0cIkUQes
IHvaQqjYYmvXThtokF0tcaWQTsn/xxzpZF9TrB9J2Lpqz1V0HV/a+TKWn05Y
ULdqh5SC3L1z+u1QI9cGh4I17VTdFvBxJSpasd+h2ad6bGptDb5sl5wxlK9A
gIOwsORsCXxbhJW0JgpRt03Gunq0ADqdOu4T2Xn47v9DSf2PHNBVihWDhtPR
E3R5ZINFKpbfdxPN802GflqykKl4EsT0ijKzROPxt2lj6Y+YaIy7vncMSY+E
N8OW/6p8BK44lLPXzYXhfY2g+qLII/hU8pbp00NQUH7gdQM7GLqe994EWQci
9NQxSfdtd9F3Qdn/xc7byNob6rn3egDSnmlb23T74++4vJYhRz9o+mfwPRT4
wHnnD1gr5j13f7wXMeS9u0H1/TXxZ2EHPMm7t6HYKCS2SJIGG/L+TQizU7jM
Z14PT8JBNV5Jdn27IlQJnuAlHsrAcAqIbpMswXnCRREuads/cHzyEuqEjwLw
H/l5cgcrD+OEk1ysXH2y1LgtC08JL+lgNneUhtxKQw3h5im8kz5KB9sno5Lw
kwSveTl/xoFEMAlHcVBc6aHvaRODNsJTFBR/Lt+9zDgS/xCuIkDRUFENpwxA
q2+N7p6FARjR7G1fsQfgttYkXGf3ALjI9SN3o8nXnk0MdCyYSR7d2QPjavYX
P+NOZJd/cb1eSoff483lTtatsPwUqKRwvgVjDAtjI/EmWOlnKEhO1OMdV+z2
kC21eJt9Ve7Pyiow3sfSKjMqIG23wGXYXoYqWy8lXpdSfDj3vdg0/jUOSyg8
4ZYpwjUffilF5kvYLN7l75stQOJFr825avkQooyrXUvJQ4yr0ND4oVykmXRq
9v7MRvhsdNNcUSZ29+wftMxNx2Ups7ngrjTIGmScSFVORVeoI0Pk1jCH6xHk
yPy6E5Y9wuF7BAKXNMUoDsMczofwy3laxKh2gMN7P1R25UbJ5jGwuJjwm/se
KPSXq/JbdaGO8N+Brd+89/Jw0/GZeNAKyemL9oluLQgnPjTheL/kKb8TDfAm
XtTBWXrzjeGGGlQTP6rgdyzSXWp3JbSJJ+WIN+bdMKtXBu2bS76U4skIk6uC
+RqdxJsinKCWRziKFKKF+PMS/3lK/TnSX8DxKB8GHk9E9EvGsFrQLrWhZByW
XWFiOmACmipuRruYYAWdFDZJGgdVwc88K20M5pZLN4pfybbyF/8dxkBd3rzG
zSEkyH+srRAYxOMZL6OY+H4MO38LsH/YB6NTlT16Yh+wztpS+Hp1N9atGM50
zuyEIi274Ux5O2z6WcqLvHR4ZAiGLnNsxTKna+F13DR0XG16GWzbDK3Pr3ec
EmuCfVHDpdSpd4iVWXZo5lcdZt//9XXV/lrkP9+fYxpfjcqNjaxWhSokmp+1
yG2uQKbbmFFBRDmCUg6IzVHLoMM6K5HTW4pkaZmp13MTHI8nYZC/9cznF5Mc
nydh417JNR83iTXEaxbWD/bkh/VNIJr4zURCxq0V4qrjcCOej8J3vuB+xMER
TueHINMk9sbFehCFxPsB6NULJia/+cjxn4H0VVl/DRr2cjrQjb2S+8wkojrh
S3rQjnnRZuMARzqKSBfaYDo6Z+9YS+P8b7bgUo39FyfxZgg7L3WiCTdu3xnz
pTTgNOlFPXL4hjSoInW4QLpRg0iFryJ826ZwikfDIUxvGse8vvlaC81AON4j
/PGhGSSct13Ds3cGikWqulw/ptGdKqt9dus0mCWPuQNXT4HWuHSTiPVwnbpj
wYKTmX6Y7BQTKSGJb3Odx6HUacXe+e8otseqdLNCR373oPCikPow7tg11kmw
BrH2YJyQYcEAjDfSt6s96oehSUjZL56PcFWNSNQSYGD26Gbrm2q9mD+072bp
jW5U6FPk2lidyGoLWhlG7cA042Q0fX07XJ3Nne52t8FEWjA+73krvrroRnrE
0JDn+pxPPqYFZuU7pJX+24yQs56U47kznG6xEWBy3a25iM3pFxsl063VKaKz
MCQdY6OK0pL+6SkbVNIzNrol+kumU2bAQ7o2gy0UK6/6qCmkkb59wn27QCmL
ZyzQSOcmQN9i3X6sdBznSe/G0Bw4LZTFO4o00r1hxLE1DkQFDcGf9G8Q9qdf
dtYZDcCKdLAf4faXF0tpfRgnPWTg7RD71RXHXliQLnajep2Pf7FPF2pJHzux
gU83lMlq53SSjv8DdHSQug==
"]}, {Automatic, Automatic}], $CellContext`loanHistoryList[
Pattern[$CellContext`events,
Blank[]],
Pattern[$CellContext`creditMarketHistory,
Blank[]],
Pattern[$CellContext`opts,
OptionsPattern[{
"InterestRateFunction" ->
Function[{$CellContext`el, $CellContext`cm, $CellContext`nb, \
$CellContext`am}, $CellContext`cm +
0.0001 ($CellContext`nb + If[Length[$CellContext`el] > 0,
Total[
Map[First, $CellContext`el]], 0])], "AmortizationFunction" ->
Function[{$CellContext`el, $CellContext`nb},
Min[30,
Round[10 + 5 $CellContext`nb, 5]]],
"SowFunction" -> (Part[#2, 1]& )}]]] := Reap[
FoldList[$CellContext`loanEvolve[#,
Part[#2, 1],
Part[#2, 2],
OptionValue["InterestRateFunction"],
OptionValue["AmortizationFunction"]]& , {},
Thread[{$CellContext`creditMarketHistory, $CellContext`events}]],
Blank[],
OptionValue["SowFunction"]], $CellContext`loanEvolve[{},
Pattern[$CellContext`newLoan,
$CellContext`loan[
Pattern[$CellContext`newBorrowing,
Blank[]],
Pattern[$CellContext`r,
Blank[]],
Pattern[$CellContext`\[Tau],
Blank[]]]]] := {$CellContext`newLoan}, $CellContext`loanEvolve[
Pattern[$CellContext`existingLoans, {
BlankSequence[$CellContext`loan]}],
Pattern[$CellContext`newLoan,
$CellContext`loan[
Pattern[$CellContext`newBorrowing,
Blank[]],
Pattern[$CellContext`r,
Blank[]],
Pattern[$CellContext`\[Tau],
Blank[]]]]] := Append[
Map[$CellContext`loan[
$CellContext`outstandingPrincipalBalance[#, 1],
Part[#, 2],
Max[
0, Part[#, 3] -
1]]& , $CellContext`existingLoans], $CellContext`newLoan], \
$CellContext`loanEvolve[
Pattern[$CellContext`existingLoans,
Blank[List]],
Pattern[$CellContext`creditMarket,
Blank[]],
Pattern[$CellContext`newBorrowing,
Blank[]],
Pattern[$CellContext`interestRateFunction,
Blank[]],
Pattern[$CellContext`amortizationFunction,
Blank[]]] := $CellContext`loanEvolve[$CellContext`existingLoans,
Sow[
$CellContext`loan[$CellContext`newBorrowing,
$CellContext`interestRateFunction[$CellContext`existingLoans, \
$CellContext`creditMarket, $CellContext`newBorrowing,
$CellContext`amortizationFunction[$CellContext`existingLoans, \
$CellContext`newBorrowing]],
$CellContext`amortizationFunction[$CellContext`existingLoans, \
$CellContext`newBorrowing]], 1 + Count[$CellContext`existingLoans,
$CellContext`loan[
Blank[],
Blank[],
Blank[]]]]], $CellContext`outstandingPrincipalBalance[
$CellContext`loan[
Pattern[$CellContext`p0,
Blank[]],
Pattern[$CellContext`r,
Blank[]],
PatternTest[
Pattern[$CellContext`\[Tau],
Blank[]], # > 0& ]],
Pattern[$CellContext`t,
Blank[]]] = ((-E^($CellContext`r $CellContext`t) +
E^($CellContext`r $CellContext`\[Tau])) $CellContext`p0)/(-1 +
E^($CellContext`r $CellContext`\[Tau])), \
$CellContext`outstandingPrincipalBalance[
$CellContext`loan[
Pattern[$CellContext`p0,
Blank[]],
Pattern[$CellContext`r,
Blank[]],
PatternTest[
Pattern[$CellContext`\[Tau],
Blank[]], # <= 0& ]],
Pattern[$CellContext`t,
Blank[]]] := $CellContext`p0, \
$CellContext`defaultAmortizationPeriodFunction =
Function[{$CellContext`el, $CellContext`nb},
Min[30,
Round[
10 + 5 $CellContext`nb,
5]]], $CellContext`historyToOutstandingPrincipalBalance[
Pattern[$CellContext`history,
Blank[]]] := Map[Total[
ReplaceAll[
Cases[#, $CellContext`loan[
PatternTest[
Pattern[$CellContext`pb,
Blank[]], NumericQ],
PatternTest[
Blank[], NumericQ],
PatternTest[
Blank[], NumericQ]] :> $CellContext`pb], {} -> {
0}]]& , $CellContext`history], $CellContext`totalPayments[
Pattern[$CellContext`lh2,
Blank[]]] :=
With[{$CellContext`maxLength = Length[$CellContext`lh2] + Max[
Map[Part[#, 2, 3]& , $CellContext`lh2]]},
Map[Total,
Transpose[
Map[$CellContext`paymentTable[
Part[#, 2], "start" -> Part[#, 1],
"length" -> $CellContext`maxLength]& , $CellContext`lh2]]]], \
$CellContext`paymentTable[
Pattern[$CellContext`\[ScriptL],
$CellContext`loan[
Pattern[$CellContext`p0,
Blank[]],
Pattern[$CellContext`r,
Blank[]],
Pattern[$CellContext`t,
Blank[Integer]]]],
Pattern[$CellContext`opts,
OptionsPattern[{"start" -> 1, "length" -> 100}]]] := Join[
Table[0, {OptionValue["start"] - 1}],
Table[
$CellContext`payment[$CellContext`\[ScriptL]], {$CellContext`t}],
Table[
0, {OptionValue["length"] - ($CellContext`t - 1 +
OptionValue["start"])}]], $CellContext`payment[
$CellContext`loan[
Pattern[$CellContext`p0,
Blank[]],
Pattern[$CellContext`r,
Blank[]],
Pattern[$CellContext`t,
Blank[]]]] = (
E^($CellContext`r $CellContext`t) $CellContext`p0 \
$CellContext`r)/(-1 +
E^($CellContext`r $CellContext`t)), $CellContext`constantDecorations1 = \
{Joined -> True, PlotRange -> All, ImageSize -> 390, AspectRatio -> 0.21,
Axes -> False, Frame -> True, FrameStyle -> GrayLevel[0.28],
GridLines -> {Automatic, None}, ImagePadding -> {{30, 1}, {All, 12}},
BaseStyle -> {
FontFamily -> "Arial", FontSize -> 9, FontColor ->
GrayLevel[0.28]}}, $CellContext`constantDecorations2 = {
Joined -> True, PlotRange -> All, ImageSize -> 390, AspectRatio ->
0.21, Axes -> False, Frame -> True, FrameStyle -> GrayLevel[0.28],
ImagePadding -> {{30, 1}, {All, 8}}, GridLines -> Automatic,
BaseStyle -> {
FontFamily -> "Arial", FontSize -> 9, FontColor ->
GrayLevel[0.28]}}, $CellContext`statisticalVisualization[
Pattern[$CellContext`events,
Blank[]],
Pattern[$CellContext`totals,
Blank[]],
Pattern[$CellContext`opb,
Blank[]],
Pattern[$CellContext`creditMarketHistory,
Blank[]],
Pattern[$CellContext`br,
Blank[]]] :=
With[{$CellContext`so = $CellContext`statOuter[{$CellContext`events, \
$CellContext`totals, $CellContext`totals/
Mean[$CellContext`events], $CellContext`opb, $CellContext`br, \
$CellContext`br - $CellContext`creditMarketHistory}]},