-
Notifications
You must be signed in to change notification settings - Fork 0
/
rbc.yaml
65 lines (54 loc) · 1.3 KB
/
rbc.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
name: Real Business Cycle
symbols:
exogenous: [e_z]
states: [z, k]
controls: [n, i]
parameters: [beta, sigma, eta, chi, delta, alpha, rho, zbar, sig_z]
definitions: |
y[t] = exp(z[t])*k[t]^alpha*n[t]^(1-alpha)
c[t] = y[t] - i[t]
rk[t] = alpha*y[t]/k[t]
w[t] = (1-alpha)*y[t]/n[t]
equations:
arbitrage: |
chi*n[t]^eta*c[t]^sigma - w[t] ⟂ 0.0 <= n[t] <= inf
1 - beta*(c[t]/c[t+1])^(sigma)*(1-delta+rk[t+1]) ⟂ 0.20 <= i[t] <= inf
transition: |
z[t] = rho*z[t-1] + e_z
k[t] = (1-delta)*k[t-1] + i[t-1]
calibration:
# parameters
beta : 0.99
phi: 1
delta : 0.025
alpha : 0.33
rho : 0.8
sigma: 5
eta: 1
sig_z: 0.016
zbar: 0
chi : w/c^sigma/n^eta
c_i: 1.5
c_y: 0.5
e_z: 0.0
n: 0.33
z: zbar
rk: 1/beta-1+delta
w: (1-alpha)*exp(z)*(k/n)^(alpha)
k: n/(rk/alpha)^(1/(1-alpha))
y: exp(z)*k^alpha*n^(1-alpha)
i: delta*k
c: y - i
V: log(c)/(1-beta)
u: c^(1-sigma)/(1-sigma) - chi*n^(1+eta)/(1+eta)
m: beta/c^sigma*(1-delta+rk)
kss: 10
exogenous: !UNormal
sigma: 0.01
domain:
z: [-2*sig_z/(1-rho^2)^0.5, 2*sig_z/(1-rho^2)^0.5]
k: [ kss*0.5, kss*1.5]
options:
grid: !Cartesian
n: [100, 100]
discrete_choices: [n]