-
Notifications
You must be signed in to change notification settings - Fork 0
/
final_exam_solved.jl
2316 lines (1846 loc) · 79.9 KB
/
final_exam_solved.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
### A Pluto.jl notebook ###
# v0.19.42
using Markdown
using InteractiveUtils
# This Pluto notebook uses @bind for interactivity. When running this notebook outside of Pluto, the following 'mock version' of @bind gives bound variables a default value (instead of an error).
macro bind(def, element)
quote
local iv = try Base.loaded_modules[Base.PkgId(Base.UUID("6e696c72-6542-2067-7265-42206c756150"), "AbstractPlutoDingetjes")].Bonds.initial_value catch; b -> missing; end
local el = $(esc(element))
global $(esc(def)) = Core.applicable(Base.get, el) ? Base.get(el) : iv(el)
el
end
end
# ╔═╡ d1980bd2-babf-11ee-1dbb-dfefbdbdb36d
using PlutoUI, Plots, ImageShow, TestImages, FFTW, NDTools, IndexFunArrays, FileIO, FourierTools, SpecialFunctions, UrlDownload, ImageMagick
# ╔═╡ 38d09abb-9830-4902-b6e1-d863ec08149e
using JLD2
# ╔═╡ 2c34cea0-d419-4155-b4c2-44c4c7237e28
using LinearAlgebra
# ╔═╡ 17adc747-9822-42be-91c1-ad8a2e1532bc
md"# 0. Load packages"
# ╔═╡ d2c6102c-7a62-4899-9c5c-b08ce9a5baa8
FFTW.set_num_threads(4)
# ╔═╡ 8e6ec43c-9135-4829-8146-a56b8624750a
const TODO = nothing
# ╔═╡ 7331d6a5-dd03-42c7-9ab3-c84a641296bc
TableOfContents()
# ╔═╡ f326cd36-9c05-4b1c-81c0-56c954cd51f3
gauss_R(z::T, z_R) where T = iszero(z) ? T(Inf) : (1 + (z_R / z)^2)
# ╔═╡ 7c6b4ddd-ca5a-4b23-96f7-e896fb1cda6d
gauss_ψ(z, z_R) = atan(z, z_R)
# ╔═╡ dd16735b-c1d6-4977-a396-a3e23823ee68
gauss_w(z, z_R, w_0) = w_0 * sqrt(1 + (z / z_R)^2)
# ╔═╡ 8e04ae26-5474-4c2c-9fda-dbb7efd77acd
"""
gauss_beam(y, x, z, λ, w_0)
Returns the eletrical field of a Gaussian beam at position `(y, x)` at optical axis position `z` with respect to the beam waist `w_0`.
Wavelength is `λ`.
"""
function gauss_beam(y, x, z, λ, w_0)
k = π / λ * 2
z_R = π * w_0^2 / λ
r² = x ^ 2 + y ^ 2
# don't put exp(i * k * z) into the same exp, it causes some strange wraps
return w_0 / gauss_w(z, z_R, w_0) * exp(-r² / gauss_w(z, z_R, w_0)^2) *
exp(1im * k * z) *
exp(1im * (k * r² / 2 / gauss_R(z, z_R) - gauss_ψ(z, z_R)))
end
# ╔═╡ 5f21a849-0272-4bca-9659-54cd38068e09
"""
bpm(field, λ0, Lx, Ly, z, n; window=true, paraxial=true, amplitude_array)
Propagates the array `field` with wavelength `λ0` and the filed size in meter size
`(Lx, Ly)`. The propagation distance `z` should be a vector of distances.
`n` is the average refractive index of the propagation medium.
The returned array is a three dimensional array where `size(arr, 3) == size(z, 1)`.
If `window=true` we apply a Hann window function to dampen the boundaries.
A keyword `amplitude_array` can be provided, which multiplies with the field at each point. This allows to include obstacles or to shift the phase.
If `paraxial=true` the Fresnel approximation is applied.
"""
function bpm(field, λ0, Lx, Ly, z, n=1; window=true, amplitude_array=ones(size(field)..., length(z)), paraxial=true)
# free space wavenumber in m-1
k0 = 2 * π / λ0
# medium wavenumber m-1
k = n * k0
λ = λ0 / n
# medium in m
dz = z[2] - z[1]
# field parameters
Nx = size(field, 2)
dx = Lx / Nx
x = Nx > 1 ? range(-Lx/2, Lx/2, Nx) : zero(typeof(Lx))
fx = reshape(fftfreq(Nx, 1 / dx), (1, Nx))
Ny = size(field, 1)
dy = Ly / Ny
y = range(-Ly/2, Ly/2, Ny)
fy = fftfreq(Ny, 1 / dy)
if paraxial
# important step, this calculates the Fourier space kernel
H = exp.(-1im .* k .* λ^2 .* (fx.^2 .+ fy.^2) ./ (2) * dz)
else
H = exp.(1im .* sqrt.(1 .+ 0im .- λ^2 .* fx.^2 .- λ^2 .* fy.^2) .* k .* dz) .* ((λ0^2 .* fx.^2 .+ λ0^2 .* fy.^2) .< 1)
end
# 3d output fields we save
# third dimensions stores the different z propagation distances
out_field = zeros(ComplexF64, (Ny, Nx, size(z, 1)))
# first entry corresponds to z[1] = 0
out_field[:, :, 1] = field
# FFT plan for calculating FFTs
# It's a more efficient syntax: p * x == fft(x)
p = plan_fft(field, (1,2))
window_f = window ? IndexFunArrays.window_hanning(size(out_field)[1:2], border_in=0.9) : 1
# inverse FFT
invp = inv(p)
for z_index in 2:size(out_field, 3)
u0 = out_field[:, :, z_index - 1] .* window_f .* amplitude_array[:, :, z_index - 1]
u1 = invp * ((p * u0) .* H)
out_field[:, :, z_index] .= u1
end
return out_field
end
# ╔═╡ 66f6d122-3ab9-4f44-b702-4a526c0700db
"""
free_space_propagation(field, z, λ, L)
Propagate a `field` with wavelength `λ` and field size `L` with free space bandlimited angular spectrum over a distance `z`.
"""
function free_space_propagation(field, z, λ, L)
@assert size(field, 1) == size(field, 2) "Requires quadratic field"
@assert ndims(field) == 2 "Requires a 2D array"
# physical parameters
Lp = 2 * L
field_p = select_region(field, M=2)
Np = size(field_p, 1)
f_y = fftfreq(Np, inv(Lp / Np))
f_x = f_y'
k = 2 * π / λ
# matsushima bandlimit
Δu = 1 / Lp
u_limit = 1 / (sqrt((2 * Δu * z)^2 + 1) * λ)
W = ((abs2.(f_y) ./ u_limit .^2 .+ abs2.(f_x) * λ^2) .< 1) .*
((abs2.(f_x) ./ u_limit .^2 .+ abs2.(f_y) * λ^2) .< 1)
# H is the Fourier space kernel
H = W .* exp.(1im .* k .* z .* sqrt.(1 .+ 0im .- abs2.(f_x .* λ) .- abs2.(f_y .* λ)))
# do wraparound free convolution
field_propagated = select_region(fftshift(ifft(fft(ifftshift(field_p)) .* H)), M=0.5)
return field_propagated
end
# ╔═╡ 83f49548-e22f-4bf4-9e22-235fdd8b0ad2
"""
free_space_propagation(field, z, λ, L)
Propagate a `field` with wavelength `λ` and field size `L` with free space bandlimited angular spectrum over a distance `z`.
"""
function free_space_propagation_1D(field, z, λ, L)
# physical parameters
Lp = 2 * L
field_p = select_region(field, M=2)
Np = size(field_p, 1)
f_y = fftfreq(Np, inv(Lp / Np))
k = 2 * π / λ
# matsushima bandlimit
Δu = 1 / Lp
u_limit = 1 / (sqrt((2 * Δu * z)^2 + 1) * λ)
W = ((abs2.(f_y) ./ u_limit .^2 .+ abs2.(0) * λ^2) .< 1)
# H is the Fourier space kernel
H = W .* exp.(1im .* k .* z .* sqrt.(1 .+ 0im .- abs2.(f_y .* λ)))
# do wraparound free convolution
field_propagated = select_region(fftshift(ifft(fft(ifftshift(field_p)) .* H)), M=0.5)
return field_propagated
end
# ╔═╡ a5e74e57-501d-4113-adaf-586647e500e5
md"# 1. Superresolution
The classic aldiffraction limited resolution for a 4f system is based on a sharp cut-off in the Fourier domain due to the finite aperture in the Fourier plane.
In practice, this sharp cut-off is not osberved due to the finite aperture of the input.
In this exercises you explore this phenomenon.
The optical system is shown below.
The input is multiplied with an aperture `A` and in Fourier space with aperture `B`.
The size of aperture `B` is `40µm`.
1. Measure the intensity which propagates through the optical system for different frequencies. For that, use the provided `frequencies`. Create a 1D plane wave and send it through the optical system. Sum (integrate) the intensity at the detector such that each plane wave input gives you a single intensity number at the end each. Finally calculate and plot the frequency response (integrated output intensity as a function of frequency) for two different sizes of `A`. For `200µm` and `500µm`. Explain the difference.
2. Measure the system matrix $M$. For that, propagate different plane waves (as basis functions) through the optical system, use `frequencies` again. Obtain the system matrix by calculating $Y \cdot \text{pinv}(X)$ where $Y$ is the complex measurement matrix and $X$ are the complex plane waves as input.
3. Try to invert `object_blurry = optical_system_1(object1, A, B)` by multiplying the pseudoinverse `pinv(M)`. Are you able to recover the original object in the case of $A_L=200\mu m$? And how about in the case $A_L=500\mu m$? Explain the differences and why there is a difference. Use the frequencies response for that. Plot your obtained reconstructions. Also plot `object_blurry`. Also use the frequency spectrum of `object1` to argue.
"
# ╔═╡ c24ec9ec-03e6-491b-8b15-ae619d922eec
urldownload("https://felix.sumpi.org/task3.png")
# ╔═╡ d2e57f72-4ce0-4e89-bbec-f98cb3c7a604
# total field size in image space
L1 = 500e-6
# ╔═╡ aabf5012-5714-4cf8-887f-7e35bdc99bd5
# size of aperture A
A_L1 = 500e-6
# ╔═╡ 9b95e9e0-e56c-4655-8535-a66937c35db9
A_L2 = 200e-6
# ╔═╡ 347cac27-8b58-4949-8d7b-daf46fad0f7d
# size of the aperture B
B_L = 40e-6
# ╔═╡ 3f389836-1bcd-4256-889f-f873b12a7992
λ1 = 633e-9
# ╔═╡ 7bc47b96-1002-4bca-8888-28a32d2a2fec
N1 = 200
# ╔═╡ 7ad54d1b-effa-4348-8a4e-a36f62c7219c
dx1 = L1 / N1
# ╔═╡ 3e8118c9-852a-45e6-b5e3-c9968e5dbc7a
xs1 = fftpos(L1, N1, CenterFT)
# ╔═╡ 5075554c-7bd5-4852-8569-222ac55b6eea
# focal length
f1 = 1e-3
# ╔═╡ 0d784e71-60d9-4c0b-a6c2-d84f23aa22af
# the total field size in Fourier space
L_ft = λ1 * N1 * f1 / L1
# ╔═╡ 43f4933c-7285-4537-b342-ed506a347b58
x_ft1 = fftpos(L_ft, N1, CenterFT)
# ╔═╡ 546dc74a-77ac-4a1d-a8fa-6ca098162d6d
A1 = abs.(xs1) .< (A_L1 / 2)
# ╔═╡ 89406e0f-dc15-4130-95e5-6e07c45c9665
dx = L1 / size(A1, 1)
# ╔═╡ 539f7f4f-8d46-456b-b303-3c279efb56df
frequencies = fftshift(fftfreq(200, inv(dx)))
# ╔═╡ 8d175756-adb3-4c45-a173-af180f20043f
A2 = abs.(xs1) .< (A_L2 / 2)
# ╔═╡ 8488d10f-0cc1-44f1-90c6-75565defe274
B = abs.(x_ft1) .< (40e-6 / 2)
# ╔═╡ 25b3ec9a-cca9-44fe-89fc-945f81cd0220
function optical_system_1(object, A, B)
x_4 = ift(ft(object .* A) .* B)
return x_4
end
# ╔═╡ 7daec515-b788-44a1-bbb7-7c69f0e22a0d
function measure_frequency_response(frequencies, A)
return [sum(abs.(optical_system_1(exp.(1im .* xs1 .* f .* 2π), A, B))) for f in frequencies]
end
# ╔═╡ 91476a41-c2ea-4f05-8dd0-6be4f7b99a49
object1 = load(download("felix.sumpi.org/object1.jld2"), "object1");
# ╔═╡ eb32c36d-d11d-44cc-8f8e-83573838d410
plot(object1)
# ╔═╡ 693e2cbf-f638-498c-aeaa-1bd495733b9a
# ╔═╡ fa59e914-f444-4218-8627-94b324c17c5b
mfr1 = measure_frequency_response(frequencies, A1)
# ╔═╡ ac5e9c05-8aa2-41e0-9569-b91c36557a34
mfr2 = measure_frequency_response(frequencies, A2)
# ╔═╡ c3ae80a7-8221-4d61-8771-f523b82c6ba4
begin
plot(frequencies, mfr1)
plot!(frequencies, mfr2)
end
# ╔═╡ 62113fc2-4d5c-4391-be17-05fcf2a98d5e
# ╔═╡ f06b70b1-147b-4914-95a4-7d078b6de131
function build_matrix(frequencies, A)
N = length(A)
K = length(frequencies)
Y = zeros(ComplexF64, (N, K))
X = zeros(ComplexF64, (N, K))
for k in 1:K
x = exp.(1im .* xs1 .* frequencies[k] .* 2π)
X[:, k] .= x
Y[:, k] = optical_system_1(x, A, B)
end
return Y * pinv(X)
end
# ╔═╡ f0afb312-211f-4879-9cda-ffe4f1b1c659
M1 = build_matrix(frequencies, A1);
# ╔═╡ 41e2ef2f-5087-4db9-a9cf-002988648dcd
M2 = build_matrix(frequencies, A2);
# ╔═╡ 6cb21efd-cb8b-4b31-8221-813ee84b093e
# ╔═╡ 5dbd0e3e-a8bd-42cb-b8b4-df938c220c77
object_blurry1 = real.(optical_system_1(object1, A1, B))
# ╔═╡ 26098235-1b90-46fc-9b60-784f6cb0312c
object_blurry2 = real.(optical_system_1(object1, A2, B))
# ╔═╡ f0cd96d7-6c3e-4403-916d-d4b5ee64a637
begin
plot(xs1, object_blurry1)
plot!(xs1, object_blurry2)
end
# ╔═╡ 7415c2b7-294a-4540-b607-9bc1d4afb30f
begin
plot(xs1, real.(pinv(M1) * object_blurry1))
plot!(xs1, real.(pinv(M2) * object_blurry2))
plot!(xs1, object1)
end
# ╔═╡ 124ba386-473a-461a-bf4b-0110df4883e4
begin
# TODO plot
end
# ╔═╡ 970a2236-947b-4911-a56d-aad0f4104a88
md"## Answers
The finite aperture of A allows that some frequencies pass through the optical system even though there is a hard cut off in the Fourier plane.
This can be seen from the frequency response curve.
The matrix is capturing this information and allows to revert it.
"
# ╔═╡ 32b1e651-5abe-4e79-8482-84eb38a2e9ba
# ╔═╡ ee96bf68-bdfa-45e1-9300-53b300ed6dfe
# ╔═╡ 5bdc18e1-be5b-4f4e-a15b-cd9b637adaeb
md"# 2. Ptychography
Ptychography is a computational method of microscopic imaging closely related to the Gerchberg Saxton algorithm for extracting phase of intensity measurements.
It generates images by processing the intensities of multiple coherent diffraction patterns that have been scattered from an object of interest.
Its defining characteristic is translational invariance, which means that the diffraction patterns are generated by one constant function (e.g. a field of illumination) moving laterally by a known amount with respect to another constant function (the specimen itself).
At each step, only a small part of the sample is illuminated (the so called *tile*).
The diffraction patterns occur some distance away from the sample, so that the scattered waves spread out and fold into one another as shown in the figure.
Assume that in this case the Fraunhofer approximation is valid.
To recover the specimen we can apply a modified form of the Gerchberg Saxton algorithm.
Instead of looping between the input and the detector planes, we have an additional _for loop_ over the different tiles (the illuminated patch of the sample).
The tile positions are given in `positions` where the entries indicate the center of each tile.
The corresponding diffraction pattern intensities are given in `measurements`.
The third dimension of `measurements` has 81 entries because we have 81 different scan positions.
Each tile has a size of `(80, 80)` pixels.
Use the following sketch for the algorithm:
Two nested for loops, the outer one over the iterations, the inner one over the tiles (this part is already provided).
The inner *for loop* over the tiles is like a Gerchberg Saxton for a single tile.
The outer loop takes advantage of the fact that the far field patterns overlap for different tiles and this helps obtaining a better reconstruction.
Since the tiles are overlapping, as you go over the tiles the diffraction of the latest tile overwrites the overlapping areas.
* Extract current guess of the specimen at the tile position (essentially Gerchberg Saxton on a single tile)
* Multiply the beam with the current guess of the specimen
* Propagate with a Fourier transform `ft` to get to the far field.
* Replace the obtained amplitude with the measurement.
* Backpropagate
* Divide by the beam
* Write the result to the current guess at the tile position
Tasks:
1. Reconstruct the measured image by implementing the sketched algorithm.
2. The wavelength is $\lambda=405\mathrm{nm}$. The distance between sample and detector is $100\mathrm{mm}$. The pixel size of the detector is $10\mathrm{\micro m}$. What is the average distance between the scan positions?
3. Bonus: Analyze the reconstruction with 5 iterations of the outer loop. Why are the boundaries of the image more noisy than others?
"
# ╔═╡ 8af36c7e-69c5-4ba1-80f4-6727ffc58f29
urldownload("https://upload.wikimedia.org/wikipedia/commons/6/63/Ptychography_imaging_data_collection_single_aperture.png")
# ╔═╡ 4ccc02c2-9c2a-49d3-a9d4-c13d764f362a
measurements = load(download("felix.sumpi.org/ptychography.jld2"), "measurements");
# ╔═╡ f4ef4f25-6dc1-44e4-b85d-178c48267793
size(measurements)
# ╔═╡ 3f23d0fa-abce-4aa5-9ce9-686cd164d11b
beam = load(download("felix.sumpi.org/ptychography_probe.jld2"), "probe");
# ╔═╡ 2f7d18fd-a6d0-4169-9f8c-2e13210114f1
simshow(beam)
# ╔═╡ bbf84ef7-4f01-4f3a-85d7-10b71591c024
positions = [(51, 55) (51, 84) (57, 119) (64, 148) (64, 174) (53, 205) (60, 245) (56, 270) (51, 302); (93, 63) (90, 90) (83, 122) (91, 144) (83, 173) (94, 210) (83, 241) (94, 265) (87, 304); (120, 56) (121, 86) (119, 114) (111, 155) (112, 172) (111, 202) (125, 245) (119, 274) (116, 294); (145, 58) (151, 92) (153, 113) (152, 151) (150, 185) (141, 206) (152, 235) (147, 269) (153, 294); (185, 62) (184, 93) (178, 118) (171, 145) (171, 185) (171, 209) (179, 231) (183, 272) (179, 294); (208, 59) (203, 83) (208, 117) (211, 147) (206, 179) (206, 210) (201, 245) (207, 266) (205, 297); (242, 57) (241, 93) (236, 111) (242, 142) (237, 180) (231, 212) (243, 242) (235, 273) (238, 302); (274, 55) (272, 85) (262, 112) (261, 145) (267, 185) (265, 201) (275, 236) (261, 272) (270, 298); (295, 63) (305, 83) (301, 121) (302, 143) (301, 184) (294, 205) (298, 233) (303, 270) (302, 298)][:];
# ╔═╡ 34ca6dba-0059-483d-a53f-0dd2ca202803
# access the first index of the first tile, y coordinate
positions[1][1]
# ╔═╡ 7617aa1f-efd5-45a9-94dc-cf02af9f3047
# access the second index of the first tile, x coordinate
positions[1][2]
# ╔═╡ cf0bed1c-4859-4cc2-a522-38ef1eecbc95
@bind imeas Slider(axes(measurements, 3))
# ╔═╡ 874d3d95-0767-4650-8efb-e3a725cb07c7
simshow(measurements[:, :, imeas], γ=1, cmap=:turbo)
# ╔═╡ b3f9a643-81d1-4c06-b723-325836da4aed
function reconstruct_ptychography(measurements, beam, positions, N;
N_iterations=30)
reconstruction = zeros(Float64, N, N)
for Ni in 1:N_iterations
for (i, p) in enumerate(positions)
img_cropped = reconstruction[p[1]-40:p[1]+39, p[2]-40:p[2]+39]
f = ft(img_cropped .* beam)
f = cis.(angle.(f)) .* sqrt.(measurements[:, :, i])
img_space = ift(f) ./ beam
update = abs.(img_space)
reconstruction[p[1]-40:p[1]+39, p[2]-40:p[2]+39] .= update
end
end
return reconstruction
end
# ╔═╡ 127e7753-d0d1-4944-99a7-704003239f22
reconstruction = reconstruct_ptychography(measurements, beam, positions, 400, N_iterations=5);
# ╔═╡ 152287b3-5843-44c3-86f4-0285bb61e0c6
simshow(reconstruction, γ=1)
# ╔═╡ bb6a106a-8356-4d3f-ac13-2e56bc9d8f7d
# ╔═╡ 2695d736-71db-4e76-a8e2-4c42d02da622
# ╔═╡ adf2f842-26e7-420a-9e59-1fe8aafc6e75
object_space_pixel_size = 405e-9 * 100e-3 / (80 * 10e-6) / 80
# ╔═╡ b240c885-09d1-4587-b589-8416a03e7e02
average_distance = [sqrt((positions[i][2] - positions[i-1][2])^2 +(positions[i][1] - positions[i-1][1])^2) for i in 2:length(positions)]
# ╔═╡ 374baf86-1356-4c83-b24a-68ffe52bedcc
30 * object_space_pixel_size
# ╔═╡ b685eea0-b4cf-4231-8042-f05294a3547b
md"## Answers
The average distance between the tiles is roughly 19µm.
On the corners of the image are less tiles and less cross talk, hence the reconstruction quality is worse.
"
# ╔═╡ 121be5eb-4eb0-4a60-89d2-8104ed806994
# ╔═╡ 1824cd6b-8ba0-4e54-94ee-9972c758c85d
# ╔═╡ ce6e853b-e8de-4c14-9900-63236eaffce3
# ╔═╡ cc2acb93-dd22-4ff1-a085-d5db3a8d8867
# ╔═╡ e939a228-954c-43bd-a5e6-a4a9edfbac1d
# ╔═╡ 394a2921-11ca-40b1-b57f-31aec08f601e
# ╔═╡ 200141af-5d24-43c9-8167-980f8ff89a69
md"# 3. Find the transparency
Consider the optical systems shown in Figure 3. A unknown mystery transparency is placed at the input plane $P_1$.
A second known phase pattern (called `diffuser3`) transparency is placed at plane $P_2$, a given distance $z_{31}$ away. The complex field of the light transmitted through the second transparency is detected on a **finite** aperture camera at distance $z_{32}$ after the second transparency. This final field is given and called `field3`.
1. Use phase conjugation and reverse propagation to retrieve the phase of the input transparency from the measured field given the phase of the transparency in the middle.
2. The reconstruction looks not perfect. Why do you think that is the case? What makes this optical system not perfectly reversible.
3. Bonus: Assume that you do not know the phase of the transparency in the middle but you know instead a set of measurement of complex fields with different illumination angles. How would you reconstruct the input phase in this case?
"
# ╔═╡ ca833fc1-248f-49c4-a6ea-20ee52062aa9
urldownload("https://felix.sumpi.org/task3.png")
# ╔═╡ b5b25dd3-0adb-44e6-9c17-13ee912313cd
field3 = load(download("felix.sumpi.org/phase_exam.jld2"), "phase_exam");
# ╔═╡ bb83a3a0-f9f1-4042-8290-dbfc878acf07
diffuser3 = load(download("felix.sumpi.org/diffuser_exam.jld2"), "diffuser_exam");
# ╔═╡ 868f67b2-4834-4803-9c77-c1def9ceb433
simshow(field3, γ=1)
# ╔═╡ 75267942-8e91-4c8b-9d2e-4dec9e5b9318
simshow(diffuser3)
# ╔═╡ 4f4aa449-f774-4d19-af09-b79fcc351450
z31 = 10e-3
# ╔═╡ 6b870f0d-4b69-4c42-bccd-d4ff72612000
z32 = 20e-3
# ╔═╡ 61f151c5-63bb-4448-aa51-cce91efeb088
L3 = 1e-3
# ╔═╡ a07bb98a-9437-4f72-80aa-e6aacbcf5be7
λ3 = 405e-9
# ╔═╡ 198ed99a-c0fd-49df-adbc-b8b0253a6971
TODO
# ╔═╡ a770bf76-fd85-4414-a064-902aeb0e8957
# ╔═╡ 144a7b46-3d9b-4b91-9777-9a8c292131fd
# ╔═╡ 8ba2fe0a-3c82-4846-98a9-7afb3e7cf1b1
mystery_transparency = conj.(free_space_propagation(free_space_propagation(field3, -z32, λ3, L3) .* conj.(diffuser3), -z31, λ3, L3));
# ╔═╡ 55147568-a2e1-4e1d-8cda-0572c9ed1233
simshow(mystery_transparency)
# ╔═╡ d7751773-e975-41f2-8e8b-a56f9ef8c366
# ╔═╡ b803f945-772b-4a43-8d90-39027e3f7d88
md"## Answers
## 2
Diffraction spreads out in space. If you have a finite detector, some intensity is lost and therefore backpropagation is missing some information.
### 3
One way would be to set up a Gerchberg Saxton algorithm which tries to reconstruct the mystery based on the obtained measurements.
Also one could construct a system matrix and then revert it based on this.
"
# ╔═╡ d156c2c1-8c1a-4a3d-8401-3fe8e177499e
# ╔═╡ 00000000-0000-0000-0000-000000000001
PLUTO_PROJECT_TOML_CONTENTS = """
[deps]
FFTW = "7a1cc6ca-52ef-59f5-83cd-3a7055c09341"
FileIO = "5789e2e9-d7fb-5bc7-8068-2c6fae9b9549"
FourierTools = "b18b359b-aebc-45ac-a139-9c0ccbb2871e"
ImageMagick = "6218d12a-5da1-5696-b52f-db25d2ecc6d1"
ImageShow = "4e3cecfd-b093-5904-9786-8bbb286a6a31"
IndexFunArrays = "613c443e-d742-454e-bfc6-1d7f8dd76566"
JLD2 = "033835bb-8acc-5ee8-8aae-3f567f8a3819"
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
NDTools = "98581153-e998-4eef-8d0d-5ec2c052313d"
Plots = "91a5bcdd-55d7-5caf-9e0b-520d859cae80"
PlutoUI = "7f904dfe-b85e-4ff6-b463-dae2292396a8"
SpecialFunctions = "276daf66-3868-5448-9aa4-cd146d93841b"
TestImages = "5e47fb64-e119-507b-a336-dd2b206d9990"
UrlDownload = "856ac37a-3032-4c1c-9122-f86d88358c8b"
[compat]
FFTW = "~1.8.0"
FileIO = "~1.16.2"
FourierTools = "~0.4.2"
ImageMagick = "~1.3.1"
ImageShow = "~0.3.8"
IndexFunArrays = "~0.2.7"
JLD2 = "~0.4.48"
NDTools = "~0.5.3"
Plots = "~1.40.1"
PlutoUI = "~0.7.58"
SpecialFunctions = "~2.3.1"
TestImages = "~1.8.0"
UrlDownload = "~1.0.1"
"""
# ╔═╡ 00000000-0000-0000-0000-000000000002
PLUTO_MANIFEST_TOML_CONTENTS = """
# This file is machine-generated - editing it directly is not advised
julia_version = "1.10.3"
manifest_format = "2.0"
project_hash = "6fd3cf9ab93d214ed366f22fd22196112048ef46"
[[deps.AbstractFFTs]]
deps = ["LinearAlgebra"]
git-tree-sha1 = "d92ad398961a3ed262d8bf04a1a2b8340f915fef"
uuid = "621f4979-c628-5d54-868e-fcf4e3e8185c"
version = "1.5.0"
weakdeps = ["ChainRulesCore", "Test"]
[deps.AbstractFFTs.extensions]
AbstractFFTsChainRulesCoreExt = "ChainRulesCore"
AbstractFFTsTestExt = "Test"
[[deps.AbstractNFFTs]]
deps = ["LinearAlgebra", "Printf"]
git-tree-sha1 = "292e21e99dedb8621c15f185b8fdb4260bb3c429"
uuid = "7f219486-4aa7-41d6-80a7-e08ef20ceed7"
version = "0.8.2"
[[deps.AbstractPlutoDingetjes]]
deps = ["Pkg"]
git-tree-sha1 = "0f748c81756f2e5e6854298f11ad8b2dfae6911a"
uuid = "6e696c72-6542-2067-7265-42206c756150"
version = "1.3.0"
[[deps.Adapt]]
deps = ["LinearAlgebra", "Requires"]
git-tree-sha1 = "0fb305e0253fd4e833d486914367a2ee2c2e78d0"
uuid = "79e6a3ab-5dfb-504d-930d-738a2a938a0e"
version = "4.0.1"
[deps.Adapt.extensions]
AdaptStaticArraysExt = "StaticArrays"
[deps.Adapt.weakdeps]
StaticArrays = "90137ffa-7385-5640-81b9-e52037218182"
[[deps.ArgCheck]]
git-tree-sha1 = "a3a402a35a2f7e0b87828ccabbd5ebfbebe356b4"
uuid = "dce04be8-c92d-5529-be00-80e4d2c0e197"
version = "2.3.0"
[[deps.ArgTools]]
uuid = "0dad84c5-d112-42e6-8d28-ef12dabb789f"
version = "1.1.1"
[[deps.Artifacts]]
uuid = "56f22d72-fd6d-98f1-02f0-08ddc0907c33"
[[deps.AxisArrays]]
deps = ["Dates", "IntervalSets", "IterTools", "RangeArrays"]
git-tree-sha1 = "16351be62963a67ac4083f748fdb3cca58bfd52f"
uuid = "39de3d68-74b9-583c-8d2d-e117c070f3a9"
version = "0.4.7"
[[deps.BangBang]]
deps = ["Compat", "ConstructionBase", "InitialValues", "LinearAlgebra", "Requires", "Setfield", "Tables"]
git-tree-sha1 = "7aa7ad1682f3d5754e3491bb59b8103cae28e3a3"
uuid = "198e06fe-97b7-11e9-32a5-e1d131e6ad66"
version = "0.3.40"
[deps.BangBang.extensions]
BangBangChainRulesCoreExt = "ChainRulesCore"
BangBangDataFramesExt = "DataFrames"
BangBangStaticArraysExt = "StaticArrays"
BangBangStructArraysExt = "StructArrays"
BangBangTypedTablesExt = "TypedTables"
[deps.BangBang.weakdeps]
ChainRulesCore = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4"
DataFrames = "a93c6f00-e57d-5684-b7b6-d8193f3e46c0"
StaticArrays = "90137ffa-7385-5640-81b9-e52037218182"
StructArrays = "09ab397b-f2b6-538f-b94a-2f83cf4a842a"
TypedTables = "9d95f2ec-7b3d-5a63-8d20-e2491e220bb9"
[[deps.Base64]]
uuid = "2a0f44e3-6c83-55bd-87e4-b1978d98bd5f"
[[deps.Baselet]]
git-tree-sha1 = "aebf55e6d7795e02ca500a689d326ac979aaf89e"
uuid = "9718e550-a3fa-408a-8086-8db961cd8217"
version = "0.1.1"
[[deps.BasicInterpolators]]
deps = ["LinearAlgebra", "Memoize", "Random"]
git-tree-sha1 = "3f7be532673fc4a22825e7884e9e0e876236b12a"
uuid = "26cce99e-4866-4b6d-ab74-862489e035e0"
version = "0.7.1"
[[deps.BitFlags]]
git-tree-sha1 = "2dc09997850d68179b69dafb58ae806167a32b1b"
uuid = "d1d4a3ce-64b1-5f1a-9ba4-7e7e69966f35"
version = "0.1.8"
[[deps.Bzip2_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "9e2a6b69137e6969bab0152632dcb3bc108c8bdd"
uuid = "6e34b625-4abd-537c-b88f-471c36dfa7a0"
version = "1.0.8+1"
[[deps.CEnum]]
git-tree-sha1 = "389ad5c84de1ae7cf0e28e381131c98ea87d54fc"
uuid = "fa961155-64e5-5f13-b03f-caf6b980ea82"
version = "0.5.0"
[[deps.Cairo_jll]]
deps = ["Artifacts", "Bzip2_jll", "CompilerSupportLibraries_jll", "Fontconfig_jll", "FreeType2_jll", "Glib_jll", "JLLWrappers", "LZO_jll", "Libdl", "Pixman_jll", "Pkg", "Xorg_libXext_jll", "Xorg_libXrender_jll", "Zlib_jll", "libpng_jll"]
git-tree-sha1 = "4b859a208b2397a7a623a03449e4636bdb17bcf2"
uuid = "83423d85-b0ee-5818-9007-b63ccbeb887a"
version = "1.16.1+1"
[[deps.ChainRulesCore]]
deps = ["Compat", "LinearAlgebra"]
git-tree-sha1 = "575cd02e080939a33b6df6c5853d14924c08e35b"
uuid = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4"
version = "1.23.0"
weakdeps = ["SparseArrays"]
[deps.ChainRulesCore.extensions]
ChainRulesCoreSparseArraysExt = "SparseArrays"
[[deps.CodecZlib]]
deps = ["TranscodingStreams", "Zlib_jll"]
git-tree-sha1 = "59939d8a997469ee05c4b4944560a820f9ba0d73"
uuid = "944b1d66-785c-5afd-91f1-9de20f533193"
version = "0.7.4"
[[deps.ColorSchemes]]
deps = ["ColorTypes", "ColorVectorSpace", "Colors", "FixedPointNumbers", "PrecompileTools", "Random"]
git-tree-sha1 = "67c1f244b991cad9b0aa4b7540fb758c2488b129"
uuid = "35d6a980-a343-548e-a6ea-1d62b119f2f4"
version = "3.24.0"
[[deps.ColorTypes]]
deps = ["FixedPointNumbers", "Random"]
git-tree-sha1 = "eb7f0f8307f71fac7c606984ea5fb2817275d6e4"
uuid = "3da002f7-5984-5a60-b8a6-cbb66c0b333f"
version = "0.11.4"
[[deps.ColorVectorSpace]]
deps = ["ColorTypes", "FixedPointNumbers", "LinearAlgebra", "Requires", "Statistics", "TensorCore"]
git-tree-sha1 = "a1f44953f2382ebb937d60dafbe2deea4bd23249"
uuid = "c3611d14-8923-5661-9e6a-0046d554d3a4"
version = "0.10.0"
weakdeps = ["SpecialFunctions"]
[deps.ColorVectorSpace.extensions]
SpecialFunctionsExt = "SpecialFunctions"
[[deps.Colors]]
deps = ["ColorTypes", "FixedPointNumbers", "Reexport"]
git-tree-sha1 = "fc08e5930ee9a4e03f84bfb5211cb54e7769758a"
uuid = "5ae59095-9a9b-59fe-a467-6f913c188581"
version = "0.12.10"
[[deps.Compat]]
deps = ["TOML", "UUIDs"]
git-tree-sha1 = "c955881e3c981181362ae4088b35995446298b80"
uuid = "34da2185-b29b-5c13-b0c7-acf172513d20"
version = "4.14.0"
weakdeps = ["Dates", "LinearAlgebra"]
[deps.Compat.extensions]
CompatLinearAlgebraExt = "LinearAlgebra"
[[deps.CompilerSupportLibraries_jll]]
deps = ["Artifacts", "Libdl"]
uuid = "e66e0078-7015-5450-92f7-15fbd957f2ae"
version = "1.1.1+0"
[[deps.CompositionsBase]]
git-tree-sha1 = "802bb88cd69dfd1509f6670416bd4434015693ad"
uuid = "a33af91c-f02d-484b-be07-31d278c5ca2b"
version = "0.1.2"
[deps.CompositionsBase.extensions]
CompositionsBaseInverseFunctionsExt = "InverseFunctions"
[deps.CompositionsBase.weakdeps]
InverseFunctions = "3587e190-3f89-42d0-90ee-14403ec27112"
[[deps.ConcurrentUtilities]]
deps = ["Serialization", "Sockets"]
git-tree-sha1 = "9c4708e3ed2b799e6124b5673a712dda0b596a9b"
uuid = "f0e56b4a-5159-44fe-b623-3e5288b988bb"
version = "2.3.1"
[[deps.ConstructionBase]]
deps = ["LinearAlgebra"]
git-tree-sha1 = "c53fc348ca4d40d7b371e71fd52251839080cbc9"
uuid = "187b0558-2788-49d3-abe0-74a17ed4e7c9"
version = "1.5.4"
[deps.ConstructionBase.extensions]
ConstructionBaseIntervalSetsExt = "IntervalSets"
ConstructionBaseStaticArraysExt = "StaticArrays"
[deps.ConstructionBase.weakdeps]
IntervalSets = "8197267c-284f-5f27-9208-e0e47529a953"
StaticArrays = "90137ffa-7385-5640-81b9-e52037218182"
[[deps.ContextVariablesX]]
deps = ["Compat", "Logging", "UUIDs"]
git-tree-sha1 = "25cc3803f1030ab855e383129dcd3dc294e322cc"
uuid = "6add18c4-b38d-439d-96f6-d6bc489c04c5"
version = "0.1.3"
[[deps.Contour]]
git-tree-sha1 = "d05d9e7b7aedff4e5b51a029dced05cfb6125781"
uuid = "d38c429a-6771-53c6-b99e-75d170b6e991"
version = "0.6.2"
[[deps.DataAPI]]
git-tree-sha1 = "abe83f3a2f1b857aac70ef8b269080af17764bbe"
uuid = "9a962f9c-6df0-11e9-0e5d-c546b8b5ee8a"
version = "1.16.0"
[[deps.DataStructures]]
deps = ["Compat", "InteractiveUtils", "OrderedCollections"]
git-tree-sha1 = "1fb174f0d48fe7d142e1109a10636bc1d14f5ac2"
uuid = "864edb3b-99cc-5e75-8d2d-829cb0a9cfe8"
version = "0.18.17"
[[deps.DataValueInterfaces]]
git-tree-sha1 = "bfc1187b79289637fa0ef6d4436ebdfe6905cbd6"
uuid = "e2d170a0-9d28-54be-80f0-106bbe20a464"
version = "1.0.0"
[[deps.Dates]]
deps = ["Printf"]
uuid = "ade2ca70-3891-5945-98fb-dc099432e06a"
[[deps.DefineSingletons]]
git-tree-sha1 = "0fba8b706d0178b4dc7fd44a96a92382c9065c2c"
uuid = "244e2a9f-e319-4986-a169-4d1fe445cd52"
version = "0.1.2"
[[deps.DelimitedFiles]]
deps = ["Mmap"]
git-tree-sha1 = "9e2f36d3c96a820c678f2f1f1782582fcf685bae"
uuid = "8bb1440f-4735-579b-a4ab-409b98df4dab"
version = "1.9.1"
[[deps.Distances]]
deps = ["LinearAlgebra", "Statistics", "StatsAPI"]
git-tree-sha1 = "66c4c81f259586e8f002eacebc177e1fb06363b0"
uuid = "b4f34e82-e78d-54a5-968a-f98e89d6e8f7"
version = "0.10.11"
weakdeps = ["ChainRulesCore", "SparseArrays"]
[deps.Distances.extensions]
DistancesChainRulesCoreExt = "ChainRulesCore"
DistancesSparseArraysExt = "SparseArrays"
[[deps.Distributed]]
deps = ["Random", "Serialization", "Sockets"]
uuid = "8ba89e20-285c-5b6f-9357-94700520ee1b"
[[deps.DocStringExtensions]]
deps = ["LibGit2"]
git-tree-sha1 = "2fb1e02f2b635d0845df5d7c167fec4dd739b00d"
uuid = "ffbed154-4ef7-542d-bbb7-c09d3a79fcae"
version = "0.9.3"
[[deps.Downloads]]
deps = ["ArgTools", "FileWatching", "LibCURL", "NetworkOptions"]
uuid = "f43a241f-c20a-4ad4-852c-f6b1247861c6"
version = "1.6.0"
[[deps.EpollShim_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl"]
git-tree-sha1 = "8e9441ee83492030ace98f9789a654a6d0b1f643"
uuid = "2702e6a9-849d-5ed8-8c21-79e8b8f9ee43"
version = "0.0.20230411+0"
[[deps.ExceptionUnwrapping]]
deps = ["Test"]
git-tree-sha1 = "dcb08a0d93ec0b1cdc4af184b26b591e9695423a"
uuid = "460bff9d-24e4-43bc-9d9f-a8973cb893f4"
version = "0.1.10"
[[deps.Expat_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl"]
git-tree-sha1 = "4558ab818dcceaab612d1bb8c19cee87eda2b83c"
uuid = "2e619515-83b5-522b-bb60-26c02a35a201"
version = "2.5.0+0"
[[deps.FFMPEG]]
deps = ["FFMPEG_jll"]
git-tree-sha1 = "b57e3acbe22f8484b4b5ff66a7499717fe1a9cc8"
uuid = "c87230d0-a227-11e9-1b43-d7ebe4e7570a"
version = "0.4.1"
[[deps.FFMPEG_jll]]
deps = ["Artifacts", "Bzip2_jll", "FreeType2_jll", "FriBidi_jll", "JLLWrappers", "LAME_jll", "Libdl", "Ogg_jll", "OpenSSL_jll", "Opus_jll", "PCRE2_jll", "Pkg", "Zlib_jll", "libaom_jll", "libass_jll", "libfdk_aac_jll", "libvorbis_jll", "x264_jll", "x265_jll"]
git-tree-sha1 = "74faea50c1d007c85837327f6775bea60b5492dd"
uuid = "b22a6f82-2f65-5046-a5b2-351ab43fb4e5"
version = "4.4.2+2"
[[deps.FFTW]]
deps = ["AbstractFFTs", "FFTW_jll", "LinearAlgebra", "MKL_jll", "Preferences", "Reexport"]
git-tree-sha1 = "4820348781ae578893311153d69049a93d05f39d"
uuid = "7a1cc6ca-52ef-59f5-83cd-3a7055c09341"
version = "1.8.0"
[[deps.FFTW_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "c6033cc3892d0ef5bb9cd29b7f2f0331ea5184ea"
uuid = "f5851436-0d7a-5f13-b9de-f02708fd171a"
version = "3.3.10+0"
[[deps.FLoops]]
deps = ["BangBang", "Compat", "FLoopsBase", "InitialValues", "JuliaVariables", "MLStyle", "Serialization", "Setfield", "Transducers"]
git-tree-sha1 = "ffb97765602e3cbe59a0589d237bf07f245a8576"
uuid = "cc61a311-1640-44b5-9fba-1b764f453329"
version = "0.2.1"
[[deps.FLoopsBase]]
deps = ["ContextVariablesX"]
git-tree-sha1 = "656f7a6859be8673bf1f35da5670246b923964f7"
uuid = "b9860ae5-e623-471e-878b-f6a53c775ea6"
version = "0.1.1"
[[deps.FileIO]]
deps = ["Pkg", "Requires", "UUIDs"]
git-tree-sha1 = "c5c28c245101bd59154f649e19b038d15901b5dc"
uuid = "5789e2e9-d7fb-5bc7-8068-2c6fae9b9549"
version = "1.16.2"
[[deps.FileWatching]]
uuid = "7b1f6079-737a-58dc-b8bc-7a2ca5c1b5ee"
[[deps.FixedPointNumbers]]
deps = ["Statistics"]
git-tree-sha1 = "335bfdceacc84c5cdf16aadc768aa5ddfc5383cc"
uuid = "53c48c17-4a7d-5ca2-90c5-79b7896eea93"
version = "0.8.4"
[[deps.Fontconfig_jll]]
deps = ["Artifacts", "Bzip2_jll", "Expat_jll", "FreeType2_jll", "JLLWrappers", "Libdl", "Libuuid_jll", "Pkg", "Zlib_jll"]
git-tree-sha1 = "21efd19106a55620a188615da6d3d06cd7f6ee03"
uuid = "a3f928ae-7b40-5064-980b-68af3947d34b"
version = "2.13.93+0"
[[deps.Format]]
git-tree-sha1 = "f3cf88025f6d03c194d73f5d13fee9004a108329"
uuid = "1fa38f19-a742-5d3f-a2b9-30dd87b9d5f8"
version = "1.3.6"
[[deps.FourierTools]]
deps = ["ChainRulesCore", "FFTW", "IndexFunArrays", "LinearAlgebra", "NDTools", "NFFT", "PaddedViews", "Reexport", "ShiftedArrays"]
git-tree-sha1 = "8967a9d259ab1c50e3b3abc6b77d3e3d829d2e6d"
uuid = "b18b359b-aebc-45ac-a139-9c0ccbb2871e"
version = "0.4.2"
[[deps.FreeType2_jll]]
deps = ["Artifacts", "Bzip2_jll", "JLLWrappers", "Libdl", "Zlib_jll"]
git-tree-sha1 = "d8db6a5a2fe1381c1ea4ef2cab7c69c2de7f9ea0"
uuid = "d7e528f0-a631-5988-bf34-fe36492bcfd7"
version = "2.13.1+0"
[[deps.FriBidi_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "aa31987c2ba8704e23c6c8ba8a4f769d5d7e4f91"
uuid = "559328eb-81f9-559d-9380-de523a88c83c"
version = "1.0.10+0"
[[deps.Future]]
deps = ["Random"]
uuid = "9fa8497b-333b-5362-9e8d-4d0656e87820"
[[deps.GLFW_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Libglvnd_jll", "Xorg_libXcursor_jll", "Xorg_libXi_jll", "Xorg_libXinerama_jll", "Xorg_libXrandr_jll"]
git-tree-sha1 = "ff38ba61beff76b8f4acad8ab0c97ef73bb670cb"
uuid = "0656b61e-2033-5cc2-a64a-77c0f6c09b89"
version = "3.3.9+0"
[[deps.GR]]
deps = ["Artifacts", "Base64", "DelimitedFiles", "Downloads", "GR_jll", "HTTP", "JSON", "Libdl", "LinearAlgebra", "Pkg", "Preferences", "Printf", "Random", "Serialization", "Sockets", "TOML", "Tar", "Test", "UUIDs", "p7zip_jll"]
git-tree-sha1 = "8e2d86e06ceb4580110d9e716be26658effc5bfd"
uuid = "28b8d3ca-fb5f-59d9-8090-bfdbd6d07a71"