-
Notifications
You must be signed in to change notification settings - Fork 1
/
map_plotter.py
141 lines (115 loc) · 5.06 KB
/
map_plotter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
#!/usr/bin/python3
# Copyright 2018-2022 Francisco Pina Martins <[email protected]>
# This file is part of pyRona.
# pyRona is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# pyRona is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
# You should have received a copy of the GNU General Public License
# along with pyRona. If not, see <http://www.gnu.org/licenses/>.
import cartopy.crs as ccrs
import cartopy.feature as cfeature
import cartopy.io.shapereader as shpreader
from cartopy.mpl.gridliner import LONGITUDE_FORMATTER, LATITUDE_FORMATTER
import matplotlib.pyplot as plt
import numpy as np
def map_plotter(samples, latitudes, longitudes, out_filename, shapefile):
"""
Plots a map with each sampling site coloured per its averag RONA value
"""
def _define_map_edges(latitudes, longitudes, padding=0.10):
"""
Defines the edges of the map to be drawn.
Takes a list of latitudes and longitudes as input and returns the map
edges
"""
# Define padding for the map edges
hpad = padding
vpad = padding
# Get map edges
max_lon = np.max(longitudes)
max_lon = max_lon + abs(max_lon * vpad)
min_lon = np.min(longitudes)
min_lon = min_lon - abs(min_lon * vpad)
max_lat = np.max(latitudes)
max_lat = max_lat + abs(max_lat * hpad)
min_lat = np.min(latitudes)
min_lat = min_lat - abs(min_lat * hpad)
return([min_lat, max_lat, min_lon, max_lon])
pop_names = samples
fig = plt.figure(figsize=(22, 12), facecolor="none")
map_area = plt.axes(projection=ccrs.PlateCarree())
map_edges = _define_map_edges(latitudes, longitudes)
map_area.set_extent(map_edges)
map_area.coastlines(resolution='50m')
#cfeature.BORDERS.scale = "100m"
map_area.add_feature(cfeature.BORDERS)
# Draw sampling sites
dotplot = map_area.scatter(latitudes, longitudes, c="black", s=220,
#vmin=0, vmax=max(max_ronas),
transform=ccrs.PlateCarree(),
cmap='autumn_r', zorder=2)
# Label the locations
for label, x, y in zip(pop_names, latitudes, longitudes):
map_area.annotate(label.strip().replace("_", " "), xy=(x, y),
xytext=(0, -28), textcoords='offset points',
ha='center', va='bottom', fontsize=17)
# Plot distribution shapefile
# Based on https://techoverflow.net/2021/04/25/how-to-plot-shapefile-data-in-cartopy/
my_distribution = shpreader.Reader(shapefile)
dist = [loc for loc in my_distribution.records()]
for area in dist:
dist_feature = cfeature.ShapelyFeature([area.geometry],
ccrs.PlateCarree(),
facecolor="lightgrey",
edgecolor='black',
lw=1)
map_area.add_feature(dist_feature)
# Control x and y ticks
gridlines = map_area.gridlines(draw_labels=True)
gridlines.xlines = False
gridlines.ylines = False
gridlines.ylabels_right = False
gridlines.xlabels_top = False
gridlines.xformatter = LONGITUDE_FORMATTER
gridlines.yformatter = LATITUDE_FORMATTER
gridlines.xlabel_style = {'size': 22}
gridlines.ylabel_style = {'size': 22}
# Control x and y labels
map_area.text(-0.10, 0.55, 'Latitude', va='bottom', ha='center',
rotation='vertical', rotation_mode='anchor',
transform=map_area.transAxes, fontsize=28)
map_area.text(0.5, -0.12, 'Longitude', va='bottom', ha='center',
rotation='horizontal', rotation_mode='anchor',
transform=map_area.transAxes, fontsize=28)
# Sidebar settings
#sidebar = fig.colorbar(dotplot)
#sidebar.ax.tick_params(labelsize=20)
#sidebar.set_label(label='RONA', size=30, weight='bold')
# Save the map
fig.savefig(out_filename)
def input_parser(input_filename):
"""
Parses a csv with 3 columns: Sample_names, Latitude, Longitude
Returns 3 lists, one for each column
"""
input_handle = open(input_filename, 'r')
input_handle.readline() # Skip header
samples = []
lats = []
longs = []
for lines in input_handle:
lines = lines.strip().split()
samples.append(lines[0])
lats.append(float(lines[2]))
longs.append(float(lines[1]))
return samples, lats, longs
if __name__ == "__main__":
# Usage: python map_plotter.py sample_coords.csv map_file.svg shapefile.shp
from sys import argv
SAMPLES, LATS, LONGS = input_parser(argv[1])
map_plotter(SAMPLES, LATS, LONGS, argv[2], argv[3])