forked from sysbio-curie/topic_modeling_lncRNAs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sbmtm.py
770 lines (646 loc) · 26.6 KB
/
sbmtm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
from __future__ import print_function
import pandas as pd
import numpy as np
import os,sys,argparse
import matplotlib.pyplot as plt
from collections import Counter,defaultdict
import pickle
import graph_tool.all as gt
import scipy
import json
from time import localtime, strftime
#/home/gabriele/anaconda3/envs/gt/lib/python3.10/site-packages/trisbm
class sbmtm():
'''
Class for topic-modeling with sbm's.
'''
def __init__(self):
self.g = None ## network
self.words = [] ## list of word nodes
self.documents = [] ## list of document nodes
self.state = None ## inference state from graphtool
self.groups = {} ## results of group membership from inference
self.mdl = np.nan ## minimum description length of inferred state
self.L = np.nan ## number of levels in hierarchy
def make_graph(self,list_texts, documents = None, counts=True, n_min = None):
'''
Load a corpus and generate the word-document network
optional arguments:
- documents: list of str, titles of documents
- counts: save edge-multiplicity as counts (default: True)
- n_min, int: filter all word-nodes with less than n_min counts (default None)
'''
D = len(list_texts)
## if there are no document titles, we assign integers 0,...,D-1
## otherwise we use supplied titles
if documents == None:
list_titles = [str(h) for h in range(D)]
else:
list_titles = documents
## make a graph
## create a graph
g = gt.Graph(directed=False)
## define node properties
## name: docs - title, words - 'word'
## kind: docs - 0, words - 1
name = g.vp["name"] = g.new_vp("string")
kind = g.vp["kind"] = g.new_vp("int")
if counts:
ecount = g.ep["count"] = g.new_ep("int")
docs_add = defaultdict(lambda: g.add_vertex())
words_add = defaultdict(lambda: g.add_vertex())
## add all documents first
for i_d in range(D):
title = list_titles[i_d]
d=docs_add[title]
## add all documents and words as nodes
## add all tokens as links
for i_d in range(D):
title = list_titles[i_d]
text = list_texts[i_d]
d=docs_add[title]
name[d] = title
kind[d] = 0
c=Counter(text)
for word,count in c.items():
w=words_add[word]
name[w] = word
kind[w] = 1
if counts:
e = g.add_edge(d, w)
ecount[e] = count
else:
for n in range(count):
g.add_edge(d,w)
## filter word-types with less than n_min counts
if n_min is not None:
v_n = g.new_vertex_property("int")
for v in g.vertices():
v_n[v] = v.out_degree()
v_filter = g.new_vertex_property("bool")
for v in g.vertices():
if v_n[v] < n_min and g.vp['kind'][v]==1:
v_filter[v] = False
else:
v_filter[v] = True
g.set_vertex_filter(v_filter)
g.purge_vertices()
g.clear_filters()
self.g = g
self.words = [ g.vp['name'][v] for v in g.vertices() if g.vp['kind'][v]==1 ]
self.documents = [ g.vp['name'][v] for v in g.vertices() if g.vp['kind'][v]==0 ]
def make_graph_from_BoW_df(self, df, counts=True, n_min=None):
"""
Load a graph from a Bag of Words DataFrame
arguments
-----------
df should be a DataFrame with where df.index is a list of words and df.columns a list of documents
optional arguments:
- counts: save edge-multiplicity as counts (default: True)
- n_min, int: filter all word-nodes with less than n_min counts (default None)
:type df: DataFrame
"""
# make a graph
g = gt.Graph(directed=False)
## define node properties
## name: docs - title, words - 'word'
## kind: docs - 0, words - 1
name = g.vp["name"] = g.new_vp("string")
kind = g.vp["kind"] = g.new_vp("int")
if counts:
ecount = g.ep["count"] = g.new_ep("int")
X = df.values
# add all documents and words as nodes
# add all tokens as links
X = scipy.sparse.coo_matrix(X)
if not counts and X.dtype != int:
X_int = X.astype(int)
if not np.allclose(X.data, X_int.data):
raise ValueError('Data must be integer if '
'weighted_edges=False')
X = X_int
docs_add = defaultdict(lambda: g.add_vertex())
words_add = defaultdict(lambda: g.add_vertex())
D = len(df.columns)
## add all documents first
for i_d in range(D):
title = df.columns[i_d]
d = docs_add[title]
name[d] = title
kind[d] = 0
## add all words
for i_d in range(len(df.index)):
word = df.index[i_d]
w = words_add[word]
name[w] = word
kind[w] = 1
## add all documents and words as nodes
## add all tokens as links
for i_d in range(D):
title = df.columns[i_d]
text = df[title]
for i_w, word, count in zip(range(len(df.index)), df.index, text):
if count < 1:
continue
if counts:
e = g.add_edge(i_d, D + i_w)
ecount[e] = count
else:
for n in range(count):
g.add_edge(i_d, D + i_w)
## filter word-types with less than n_min counts
if n_min is not None:
v_n = g.new_vertex_property("int")
for v in g.vertices():
v_n[v] = v.out_degree()
v_filter = g.new_vertex_property("bool")
for v in g.vertices():
if v_n[v] < n_min and g.vp['kind'][v] == 1:
v_filter[v] = False
else:
v_filter[v] = True
g.set_vertex_filter(v_filter)
g.purge_vertices()
g.clear_filters()
self.g = g
self.words = [g.vp['name'][v] for v in g.vertices() if g.vp['kind'][v] == 1]
self.documents = [g.vp['name'][v] for v in g.vertices() if g.vp['kind'][v] == 0]
return self
def save_graph(self,filename = 'graph.gt.gz'):
'''
Save the word-document network generated by make_graph() as filename.
Allows for loading the graph without calling make_graph().
'''
self.g.save(filename)
def load_graph(self,filename = 'graph.gt.gz'):
'''
Load a word-document network generated by make_graph() and saved with save_graph().
'''
self.g = gt.load_graph(filename)
self.words = [ self.g.vp['name'][v] for v in self.g.vertices() if self.g.vp['kind'][v]==1 ]
self.documents = [ self.g.vp['name'][v] for v in self.g.vertices() if self.g.vp['kind'][v]==0 ]
def dump_model(self, filename="topsbm.pkl"):
with open(filename, 'wb') as f:
pickle.dump(self, f)
def load_model(self, filename="topsbm.pkl"):
if self.g is not None:
del self.g
del self.words
del self.documents
if self.state is not None:
del self.state
del self.groups
del self.mdl
del self.L
with open(filename, 'rb') as f:
self = pickle.load(f)
def fit(self,overlap = False, n_init = 1, verbose=False, epsilon=1e-3):
'''
Fit the sbm to the word-document network.
- overlap, bool (default: False). Overlapping or Non-overlapping groups.
Overlapping not implemented yet
- n_init, int (default:1): number of different initial conditions to run in order to avoid local minimum of MDL.
'''
g = self.g
if g is None:
print('No data to fit the SBM. Load some data first (make_graph)')
else:
if overlap and "count" in g.ep:
raise ValueError("When using overlapping SBMs, the graph must be constructed with 'counts=False'")
clabel = g.vp['kind']
state_args = {'clabel': clabel, 'pclabel': clabel}
if "count" in g.ep:
state_args["eweight"] = g.ep.count
## the inference
mdl = np.inf ##
for i_n_init in range(n_init):
base_type = gt.BlockState if not overlap else gt.OverlapBlockState
state_tmp = gt.minimize_nested_blockmodel_dl(g,
state_args=dict(
base_type=base_type,
**state_args),
multilevel_mcmc_args=dict(
verbose=verbose))
L = 0
for s in state_tmp.levels:
L += 1
if s.get_nonempty_B() == 2:
break
state_tmp = state_tmp.copy(bs=state_tmp.get_bs()[:L] + [np.zeros(1)])
# state_tmp = state_tmp.copy(sampling=True)
# delta = 1 + epsilon
# while abs(delta) > epsilon:
# delta = state_tmp.multiflip_mcmc_sweep(niter=10, beta=np.inf)[0]
# print(delta)
print(state_tmp)
mdl_tmp = state_tmp.entropy()
if mdl_tmp < mdl:
mdl = 1.0*mdl_tmp
state = state_tmp.copy()
self.state = state
## minimum description length
self.mdl = state.entropy()
L = len(state.levels)
if L == 2:
self.L = 1
else:
self.L = L-2
def search_consensus(self, force_niter=100000, niter=100):
# collect nested partitions
bs = []
def collect_partitions(s):
bs.append(s.get_bs())
print("Calling first function")
# Now we collect the marginals for exactly niter sweeps
gt.mcmc_equilibrate(self.state, force_niter=force_niter, mcmc_args=dict(niter=niter),
callback=collect_partitions)
print("First function completed")
# Disambiguate partitions and obtain marginals
pmode = gt.PartitionModeState(bs, nested=True, converge=True)
pv = pmode.get_marginal(self.g)
print("Second function completed")
# Get consensus estimate
bs = pmode.get_max_nested()
self.state = self.state.copy(bs=bs)
return pv
def plot(self, filename = None,layout ="bipartite", nedges = 1000):
'''
Plot the graph and group structure.
optional:
- filename, str; where to save the plot. if None, will not be saved
- nedges, int; subsample to plot (faster, less memory)
'''
self.state.draw(layout=layout, output=filename,
subsample_edges=nedges, hshortcuts=1, hide=0)
def print_summary(self, tofile=True, filename="summary"):
'''
Print hierarchy summary
'''
if tofile:
orig_stdout = sys.stdout
f = open(f'{filename}.txt', 'w')
sys.stdout = f
self.state.print_summary()
sys.stdout = orig_stdout
f.close()
else:
self.state.print_summary()
def topics(self, l=0, n=10):
'''
get the n most common words for each word-group in level l.
return tuples (word,P(w|tw))
'''
# dict_groups = self.groups[l]
dict_groups = self.get_groups(l=l)
Bw = dict_groups['Bw']
p_w_tw = dict_groups['p_w_tw']
words = self.words
## loop over all word-groups
dict_group_words = {}
for tw in range(Bw):
p_w_ = p_w_tw[:,tw]
ind_w_ = np.argsort(p_w_)[::-1]
list_words_tw = []
for i in ind_w_[:n]:
if p_w_[i] > 0:
list_words_tw+=[(words[i],p_w_[i])]
else:
break
dict_group_words[tw] = list_words_tw
return dict_group_words
def topicdist(self, doc_index, l=0):
# dict_groups = self.groups[l]
dict_groups = self.get_groups(l=l)
p_tw_d = dict_groups['p_tw_d']
list_topics_tw = []
for tw,p_tw in enumerate(p_tw_d[:,doc_index]):
list_topics_tw += [(tw,p_tw)]
return list_topics_tw
def clusters(self,l=0,n=10):
'''
Get n 'most common' documents from each document cluster.
most common refers to largest contribution in group membership vector.
For the non-overlapping case, each document belongs to one and only one group with prob 1.
'''
# dict_groups = self.groups[l]
dict_groups = self.get_groups(l=l)
Bd = dict_groups['Bd']
p_td_d = dict_groups['p_td_d']
docs = self.documents
## loop over all word-groups
dict_group_docs = {}
for td in range(Bd):
p_d_ = p_td_d[td,:]
ind_d_ = np.argsort(p_d_)[::-1]
list_docs_td = []
for i in ind_d_[:n]:
if p_d_[i] > 0:
list_docs_td+=[(docs[i],p_d_[i])]
else:
break
dict_group_docs[td] = list_docs_td
return dict_group_docs
def clusters_query(self,doc_index,l=0):
'''
Get all documents in the same group as the query-document.
Note: Works only for non-overlapping model.
For overlapping case, we need something else.
'''
# dict_groups = self.groups[l]
dict_groups = self.get_groups(l=l)
Bd = dict_groups['Bd']
p_td_d = dict_groups['p_td_d']
documents = self.documents
## loop over all word-groups
dict_group_docs = {}
td = np.argmax(p_td_d[:,doc_index])
list_doc_index_sel = np.where(p_td_d[td,:]==1)[0]
list_doc_query = []
for doc_index_sel in list_doc_index_sel:
if doc_index != doc_index_sel:
list_doc_query += [(doc_index_sel,documents[doc_index_sel])]
return list_doc_query
def group_membership(self,l=0):
'''
Return the group-membership vectors for
- document-nodes, p_td_d, array with shape Bd x D
- word-nodes, p_tw_w, array with shape Bw x V
It gives the probability of a nodes belonging to one of the groups.
'''
# dict_groups = self.groups[l]
dict_groups = self.get_groups(l=l)
p_tw_w = dict_groups['p_tw_w']
p_td_d = dict_groups['p_td_d']
return p_td_d,p_tw_w
def print_topics(self,l=0,format='csv',path_save = ''):
'''
Print topics, topic-distributions, and document clusters for a given level in the hierarchy.
format: csv (default) or html
'''
V=self.get_V()
D=self.get_D()
## topics
dict_topics = self.topics(l=l,n=-1)
list_topics = sorted(list(dict_topics.keys()))
list_columns = ['Topic %s'%(t+1) for t in list_topics]
T = len(list_topics)
df = pd.DataFrame(columns = list_columns,index=range(V))
for t in list_topics:
list_w = [h[0] for h in dict_topics[t]]
V_t = len(list_w)
df.iloc[:V_t,t] = list_w
df=df.dropna(how='all',axis=0)
if format == 'csv':
fname_save = 'topsbm_level_%s_topics.csv'%(l)
filename = os.path.join(path_save,fname_save)
df.to_csv(filename,index=False,na_rep='')
elif format == 'html':
fname_save = 'topsbm_level_%s_topics.html'%(l)
filename = os.path.join(path_save,fname_save)
df.to_html(filename,index=False,na_rep='')
elif format=='tsv':
fname_save = 'topsbm_level_%s_topics.tsv'%(l)
filename = os.path.join(path_save,fname_save)
df.to_csv(filename,index=False,na_rep='',sep='\t')
else:
pass
## topic distributions
list_columns = ['i_doc','doc']+['Topic %s'%(t+1) for t in list_topics]
df = pd.DataFrame(columns=list_columns,index=range(D))
for i_doc in range(D):
list_topicdist = self.topicdist(i_doc,l=l)
df.iloc[i_doc,0] = i_doc
df.iloc[i_doc,1] = self.documents[i_doc]
df.iloc[i_doc,2:] = [h[1] for h in list_topicdist]
df=df.dropna(how='all',axis=1)
if format == 'csv':
fname_save = 'topsbm_level_%s_topic-dist.csv'%(l)
filename = os.path.join(path_save,fname_save)
df.to_csv(filename,index=False,na_rep='')
elif format == 'html':
fname_save = 'topsbm_level_%s_topic-dist.html'%(l)
filename = os.path.join(path_save,fname_save)
df.to_html(filename,index=False,na_rep='')
else:
pass
## doc-groups
dict_clusters = self.clusters(l=l,n=-1)
list_clusters = sorted(list(dict_clusters.keys()))
list_columns = ['Cluster %s'%(t+1) for t in list_clusters]
T = len(list_clusters)
df = pd.DataFrame(columns = list_columns,index=range(D))
for t in list_clusters:
list_d = [h[0] for h in dict_clusters[t]]
D_t = len(list_d)
df.iloc[:D_t,t] = list_d
df=df.dropna(how='all',axis=0)
if format == 'csv':
fname_save = 'topsbm_level_%s_clusters.csv'%(l)
filename = os.path.join(path_save,fname_save)
df.to_csv(filename,index=False,na_rep='')
elif format == 'html':
fname_save = 'topsbm_level_%s_clusters.html'%(l)
filename = os.path.join(path_save,fname_save)
df.to_html(filename,index=False,na_rep='')
else:
pass
###########
########### HELPER FUNCTIONS
###########
def get_mdl(self):
return self.mdl
## get group-topic statistics
def get_groups(self,l=0):
'''
extract statistics on group membership of nodes form the inferred state.
return dictionary
- B_d, int, number of doc-groups
- B_w, int, number of word-groups
- p_tw_w, array B_w x V; word-group-membership:
prob that word-node w belongs to word-group tw: P(tw | w)
- p_td_d, array B_d x D; doc-group membership:
prob that doc-node d belongs to doc-group td: P(td | d)
- p_w_tw, array V x B_w; topic distribution:
prob of word w given topic tw P(w | tw)
- p_tw_d, array B_w x d; doc-topic mixtures:
prob of word-group tw in doc d P(tw | d)
- label_map, array of size N; map from group labels to indexes in the above arrays
'''
V = self.get_V()
D = self.get_D()
N = self.get_N()
g = self.g
state = self.state
state_l = state.project_level(l).copy(overlap=True)
b = gt.contiguous_map(state_l.b)
label_map = {}
for v in g.vertices():
label_map[state_l.b[v]] = b[v]
state_l = state_l.copy(b=b)
state_l_edges = state_l.get_edge_blocks() ## labeled half-edges
counts = 'count' in self.g.ep.keys()
## count labeled half-edges, group-memberships
B = state_l.get_nonempty_B()
n_wb = np.zeros((V,B)) ## number of half-edges incident on word-node w and labeled as word-group tw
n_db = np.zeros((D,B)) ## number of half-edges incident on document-node d and labeled as document-group td
n_dbw = np.zeros((D,B)) ## number of half-edges incident on document-node d and labeled as word-group td
if counts:
eweight = g.ep["count"]
else:
eweight = g.new_ep("int", 1)
ze = gt.ungroup_vector_property(state_l_edges, [0,1])
for v1, v2, z1, z2, w in g.get_edges([ze[0], ze[1], eweight]):
n_db[v1, z1] += w
n_dbw[v1, z2] += w
n_wb[v2 - D, z2] += w
p_w = np.sum(n_wb,axis=1)/float(np.sum(n_wb))
ind_d = np.where(np.sum(n_db,axis=0)>0)[0]
Bd = len(ind_d)
n_db = n_db[:,ind_d]
ind_w = np.where(np.sum(n_wb,axis=0)>0)[0]
Bw = len(ind_w)
n_wb = n_wb[:,ind_w]
ind_w2 = np.where(np.sum(n_dbw,axis=0)>0)[0]
n_dbw = n_dbw[:,ind_w2]
## group-membership distributions
# group membership of each word-node P(t_w | w)
p_tw_w = (n_wb/np.sum(n_wb,axis=1)[:,np.newaxis]).T
# group membership of each doc-node P(t_d | d)
p_td_d = (n_db/np.sum(n_db,axis=1)[:,np.newaxis]).T
## topic-distribution for words P(w | t_w)
p_w_tw = n_wb/np.sum(n_wb,axis=0)[np.newaxis,:]
## Mixture of word-groups into documetns P(t_w | d)
p_tw_d = (n_dbw/np.sum(n_dbw,axis=1)[:,np.newaxis]).T
result = {}
result['Bd'] = Bd
result['Bw'] = Bw
result['p_tw_w'] = p_tw_w
result['p_td_d'] = p_td_d
result['p_w_tw'] = p_w_tw
result['p_tw_d'] = p_tw_d
result['label_map'] = label_map
return result
### helper functions
def get_V(self):
'''
return number of word-nodes == types
'''
return int(np.sum(self.g.vp['kind'].a==1)) # no. of types
def get_D(self):
'''
return number of doc-nodes == number of documents
'''
return int(np.sum(self.g.vp['kind'].a==0)) # no. of types
def get_N(self):
'''
return number of edges == tokens
'''
return int(self.g.num_edges()) # no. of types
def group_to_group_mixture(self,l=0,norm=True):
V = self.get_V()
D = self.get_D()
N = self.get_N()
g = self.g
state = self.state
state_l = state.project_level(l).copy(overlap=True)
state_l_edges = state_l.get_edge_blocks() ## labeled half-edges
## count labeled half-edges, group-memberships
B = state_l.get_B()
n_td_tw = np.zeros((B,B))
counts = 'count' in self.g.ep.keys()
for e in g.edges():
z1,z2 = state_l_edges[e]
if counts:
n_td_tw[z1 , z2] += g.ep["count"][e]
else:
n_td_tw[z1, z2] += 1
ind_d = np.where(np.sum(n_td_tw,axis=1)>0)[0]
Bd = len(ind_d)
ind_w = np.where(np.sum(n_td_tw,axis=0)>0)[0]
Bw = len(ind_w)
n_td_tw = n_td_tw[:Bd,Bd:]
if norm == True:
return n_td_tw/np.sum(n_td_tw)
else:
return n_td_tw
def pmi_td_tw(self,l=0):
'''
Point-wise mutual information between topic-groups and doc-groups, S(td,tw)
This is an array of shape Bd x Bw.
It corresponds to
S(td,tw) = log P(tw | td) / \tilde{P}(tw | td) .
This is the log-ratio between
P(tw | td) == prb of topic tw in doc-group td;
\tilde{P}(tw | td) = P(tw) expected prob of topic tw in doc-group td under random null model.
'''
p_td_tw = self.group_to_group_mixture(l=l)
p_tw_td = p_td_tw.T
p_td = np.sum(p_tw_td,axis=0)
p_tw = np.sum(p_tw_td,axis=1)
pmi_td_tw = np.log(p_tw_td/(p_td*p_tw[:,np.newaxis])).T
return pmi_td_tw
def plot_topic_dist(self, l):
groups = self.groups[l]
p_w_tw = groups['p_w_tw']
fig=plt.figure(figsize=(12,10))
plt.imshow(p_w_tw,origin='lower',aspect='auto',interpolation='none')
plt.title(r'Word group membership $P(w | tw)$')
plt.xlabel('Topic, tw')
plt.ylabel('Word w (index)')
plt.colorbar()
fig.savefig("p_w_tw_%d.png"%l)
p_tw_d = groups['p_tw_d']
fig=plt.figure(figsize=(12,10))
plt.imshow(p_tw_d,origin='lower',aspect='auto',interpolation='none')
plt.title(r'Word group membership $P(tw | d)$')
plt.xlabel('Document (index)')
plt.ylabel('Topic, tw')
plt.colorbar()
fig.savefig("p_tw_d_%d.png"%l)
def save_data(self):
for i in range(len(self.state.get_levels())-2)[::-1]:
print("Saving level %d"%i)
self.print_topics(l=i)
self.print_topics(l=i, format='tsv')
self.plot_topic_dist(i)
e = self.state.get_levels()[i].get_matrix()
plt.matshow(e.todense())
plt.savefig("mat_%d.png"%i)
self.print_summary()
#----------------------- MY FUNCTIONS -------------------------------
def cluster_to_dict(self, l):
a=self.get_groups(l=l)["p_td_d"]
b=pd.DataFrame(data=a).dropna(axis=1).to_numpy().astype(int)
print("(clusters, samples):",b.shape)
clusters=pd.DataFrame(index=self.documents)
clusters["clu"]="--"
for i in range(b.T.shape[0]):
clusters.clu.iloc[i]=np.argmax(b.T[i])
diz_clu={}
for clu in range(b.shape[0]):
names=clusters[clusters["clu"]==clu]["clu"].index
probs=[1 for i in range(len(clusters[clusters["clu"]==clu]))]
diz_clu[str(clu)]=[list(x) for x in zip(names,probs)]
return diz_clu
def save_levels(self,dataset):
self.save_graph(filename=f"{dataset}-graph.xml.gz")
self.dump_model(filename=f"{dataset}-model.pkl")
with open(f'{dataset}-entropy.txt', 'w') as f:
f.write(str(self.state.entropy()))
self.print_summary(filename=f"{dataset}-summary")
for l in range(len(self.state.get_levels()))[::-1]:
print(f"------Begin level {l}------",strftime("%Y-%m-%d %H:%M:%S", localtime()))
#P(gene|topic)
filename=f"{dataset}-topics-level-{l}.txt"
with open(filename,"w") as convert_file:
convert_file.write(json.dumps(self.topics(l=l,n=len(self.words))))
#P(sample|cluster)
filename=f"{dataset}-cluster-level-{l}.txt"
with open(filename,"w") as convert_file:
convert_file.write(json.dumps(self.cluster_to_dict(l)))
#P(topic|sample)
a=self.get_groups(l=l)["p_tw_d"]
print("(topics, samples):",a.shape)
topic_dist=pd.DataFrame(data=a.T,index=self.documents)
topic_dist.to_csv(f"{dataset}-topsbm_level_{l}_topic_dist.csv")
print(f"------End level {l}------", strftime("%Y-%m-%d %H:%M:%S", localtime()), "\n")