-
Notifications
You must be signed in to change notification settings - Fork 0
/
124.binary-tree-maximum-path-sum.cpp
86 lines (81 loc) · 2.02 KB
/
124.binary-tree-maximum-path-sum.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
/*
* @lc app=leetcode id=124 lang=cpp
*
* [124] Binary Tree Maximum Path Sum
*
* https://leetcode.com/problems/binary-tree-maximum-path-sum/description/
*
* algorithms
* Hard (35.18%)
* Likes: 5148
* Dislikes: 375
* Total Accepted: 469K
* Total Submissions: 1.3M
* Testcase Example: '[1,2,3]'
*
* A path in a binary tree is a sequence of nodes where each pair of adjacent
* nodes in the sequence has an edge connecting them. A node can only appear in
* the sequence at most once. Note that the path does not need to pass through
* the root.
*
* The path sum of a path is the sum of the node's values in the path.
*
* Given the root of a binary tree, return the maximum path sum of any path.
*
*
* Example 1:
*
*
* Input: root = [1,2,3]
* Output: 6
* Explanation: The optimal path is 2 -> 1 -> 3 with a path sum of 2 + 1 + 3 =
* 6.
*
*
* Example 2:
*
*
* Input: root = [-10,9,20,null,null,15,7]
* Output: 42
* Explanation: The optimal path is 15 -> 20 -> 7 with a path sum of 15 + 20 +
* 7 = 42.
*
*
*
* Constraints:
*
*
* The number of nodes in the tree is in the range [1, 3 * 10^4].
* -1000 <= Node.val <= 1000
*
*
*/
// @lc code=start
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
int maxResult = INT_MIN;
int maxPathSum(TreeNode* root) {
DFS(root);
return maxResult;
}
int DFS(TreeNode* root) {
if (root == nullptr)
return 0;
int leftGain = max(DFS(root->left), 0);
int rightGain = max(DFS(root->right), 0);
maxResult = max(maxResult, root->val + leftGain + rightGain);
return root->val + max(leftGain, rightGain);
}
};
// @lc code=end