-
Notifications
You must be signed in to change notification settings - Fork 0
/
1074.number-of-submatrices-that-sum-to-target.cpp
91 lines (88 loc) · 2.16 KB
/
1074.number-of-submatrices-that-sum-to-target.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
/*
* @lc app=leetcode id=1074 lang=cpp
*
* [1074] Number of Submatrices That Sum to Target
*
* https://leetcode.com/problems/number-of-submatrices-that-sum-to-target/description/
*
* algorithms
* Hard (61.34%)
* Likes: 1059
* Dislikes: 33
* Total Accepted: 36K
* Total Submissions: 55.5K
* Testcase Example: '[[0,1,0],[1,1,1],[0,1,0]]\n0'
*
* Given a matrix and a target, return the number of non-empty submatrices that
* sum to target.
*
* A submatrix x1, y1, x2, y2 is the set of all cells matrix[x][y] with x1 <= x
* <= x2 and y1 <= y <= y2.
*
* Two submatrices (x1, y1, x2, y2) and (x1', y1', x2', y2') are different if
* they have some coordinate that is different: for example, if x1 != x1'.
*
*
* Example 1:
*
*
* Input: matrix = [[0,1,0],[1,1,1],[0,1,0]], target = 0
* Output: 4
* Explanation: The four 1x1 submatrices that only contain 0.
*
*
* Example 2:
*
*
* Input: matrix = [[1,-1],[-1,1]], target = 0
* Output: 5
* Explanation: The two 1x2 submatrices, plus the two 2x1 submatrices, plus the
* 2x2 submatrix.
*
*
* Example 3:
*
*
* Input: matrix = [[904]], target = 0
* Output: 0
*
*
*
* Constraints:
*
*
* 1 <= matrix.length <= 100
* 1 <= matrix[0].length <= 100
* -1000 <= matrix[i] <= 1000
* -10^8 <= target <= 10^8
*
*
*/
// @lc code=start
class Solution {
public:
int numSubmatrixSumTarget(vector<vector<int>>& matrix, int target) {
int m = matrix.size(), n = matrix[0].size();
for (int i = 0; i < m; ++i) {
for (int j = 1; j < n; ++j) {
matrix[i][j] += matrix[i][j - 1];
}
}
unordered_map<int, int> count;
int res = 0;
for (int i = 0; i < n; ++i) {
for (int j = i; j < n; ++j) {
count = {{0, 1}};
int cur = 0;
for (int k = 0; k < m; ++k) {
cur += matrix[k][j] - (i > 0 ? matrix[k][i - 1] : 0);
if (count.count(cur - target))
res += count[cur - target];
count[cur]++;
}
}
}
return res;
}
};
// @lc code=end